Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-23T17:19:58.041Z Has data issue: false hasContentIssue false

Is there a relationship between morphological and functional platelet changes and depressive disorder?

Published online by Cambridge University Press:  23 October 2020

Claudia Tagliarini
Affiliation:
Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Manuel Glauco Carbone*
Affiliation:
Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Giovanni Pagni
Affiliation:
Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy
Donatella Marazziti
Affiliation:
Department of Clinical and Experimental Medicine, University of Pisa, Pisa, Italy Saint Camillus International University of Health and Medical Sciences, UniCamillus, Roma, Italy
Nunzio Pomara
Affiliation:
Geriatric Psychiatry Department, Nathan Kline Institute, Orangeburg, New York, USA
*
Author for correspondence: Manuel Glauco Carbone, MD, Email: [email protected]

Abstract

Background

Blood platelets, due to shared biochemical and functional properties with presynaptic serotonergic neurons, constituted, over the years, an attractive peripheral biomarker of neuronal activity. Therefore, the literature strongly focused on the investigation of eventual structural and functional platelet abnormalities in neuropsychiatric disorders, particularly in depressive disorder. Given their impact in biological psychiatry, the goal of the present paper was to review and critically analyze studies exploring platelet activity, functionality, and morpho-structure in subjects with depressive disorder.

Methods

According to the PRISMA guidelines, we performed a systematic review through the PubMed database up to March 2020 with the search terms: (1) platelets in depression [Title/Abstract]”; (2) “(platelets[Title]) AND depressive disorder[Title/Abstract]”; (3) “(Platelet[Title]) AND major depressive disorder[Title]”; (4) (platelets[Title]) AND depressed[Title]”; (5) (platelets[Title]) AND depressive episode[Title]”; (6) (platelets[Title]) AND major depression[Title]”; (7) platelet activation in depression[All fields]”; and (8) platelet reactivity in depression[All fields].

Results

After a detailed screening analysis and the application of specific selection criteria, we included in our review a total of 106 for qualitative synthesis. The studies were classified into various subparagraphs according to platelet characteristics analyzed: serotonergic system (5-HT2A receptors, SERT activity, and 5-HT content), adrenergic system, MAO activity, biomarkers of activation, responsivity, morphological changes, and other molecular pathways.

Conclusions

Despite the large amount of the literature examined, nonunivocal and, occasionally, conflicting results emerged. However, the findings on structural and metabolic alterations, modifications in the expression of specific proteins, changes in the aggregability, or in the responsivity to different pro-activating stimuli, may be suggestive of potential platelet dysfunctions in depressed subjects, which would result in a kind of hyperreactive state. This condition could potentially lead to an increased cardiovascular risk. In line with this hypothesis, we speculated that antidepressant treatments would seem to reduce this hyperreactivity while representing a potential tool for reducing cardiovascular risk in depressed patients and, maybe, in other neuropsychiatric conditions. However, the problem of the specificity of platelet biomarkers is still at issue and would deserve to be deepened in future studies.

Type
Review
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

American Psychiatric Association. Diagnostic and statistical manual of mental disorders (5th ed.). Arlington, VA: Author. 2013.CrossRefGoogle Scholar
Moussavi, S, et al. Depression, chronic diseases, and decrements in health: results from the World Health Surveys. Lancet. 2007;370(9590):851858.CrossRefGoogle ScholarPubMed
Organization WH. Depression and Other Common Mental Disorders: Global Health Estimates. Geneva: World Health Organization; 2017.Google Scholar
Miller, AH, Maletic, V, Raison, CL. Inflammation and its discontents: the role of cytokines in the pathophysiology of major depression. Biol Psychiatry. 2009;65(9):732741.CrossRefGoogle ScholarPubMed
Pace, TW, et al. Increased stress-induced inflammatory responses in male patients with major depression and increased early life stress. Am J Psychiatry. 2006;163(9):16301633.10.1176/ajp.2006.163.9.1630CrossRefGoogle ScholarPubMed
Sluzewska, A, Rybakowski, J, Bosmans, E, Sobieska, M, Berghmans, R, Maes, M, et al. Indicators of immune activation in major depression. Psychiatry Res. 1996;64(3):161167.CrossRefGoogle ScholarPubMed
Bauer, ME, Teixeira, AL. Inflammation in psychiatric disorders: what comes first? Ann N Y Acad Sci. 2019;1437(1):5767.CrossRefGoogle Scholar
Dantzer, R, et al. Identification and treatment of symptoms associated with inflammation in medically ill patients. Psychoneuroendocrinology. 2008;33(1):1829.10.1016/j.psyneuen.2007.10.008CrossRefGoogle ScholarPubMed
Dantzer, R, et al. From inflammation to sickness and depression: when the immune system subjugates the brain. Nat Rev Neurosci. 2008;9(1):4656.CrossRefGoogle ScholarPubMed
Dowlati, Y, et al. A meta-analysis of cytokines in major depression. Biol Psychiatry. 2010;67(5):446457.CrossRefGoogle ScholarPubMed
Leonard, BE. The concept of depression as a dysfunction of the immune system. Curr Immunol Rev. 2010;6(3):205212.10.2174/157339510791823835CrossRefGoogle ScholarPubMed
Miller, AH, Raison, CL. Cytokines, p38 MAP kinase and the pathophysiology of depression. Neuropsychopharmacology. 2006;31(10):20892090.CrossRefGoogle ScholarPubMed
Quan, N, Banks, WA. Brain-immune communication pathways. Brain Behav Immun. 2007;21(6):727735.CrossRefGoogle ScholarPubMed
Raison, CL, Capuron, L, Miller, AH. Cytokines sing the blues: inflammation and the pathogenesis of depression. Trends Immunol. 2006;27(1):2431.CrossRefGoogle ScholarPubMed
Raison, CL, Miller, AH. Do cytokines really sing the blues? Cerebrum. 2013;2013:10 Google ScholarPubMed
Simmons, DA, Broderick, PA. Cytokines, stressors, and clinical depression: augmented adaptation responses underlie depression pathogenesis. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(5):793807.CrossRefGoogle ScholarPubMed
Vichaya, EG, et al. Lipocalin-2 is dispensable in inflammation-induced sickness and depression-like behavior. Psychopharmacology (Berl). 2019;236(10):29752982.CrossRefGoogle ScholarPubMed
Miller, AH. Neuroendocrine and immune system interactions in stress and depression. Psychiatr Clin North Am. 1998;21(2):443463.CrossRefGoogle ScholarPubMed
Dantzer, R, Kelley, KW. Stress and immunity: an integrated view of relationships between the brain and the immune system. Life Sci. 1989;44(26):19952008.10.1016/0024-3205(89)90345-7CrossRefGoogle ScholarPubMed
Frank, MG, et al. Microglia serve as a neuroimmune substrate for stress-induced potentiation of CNS pro-inflammatory cytokine responses. Brain Behav Immun. 2007;21(1):4759.10.1016/j.bbi.2006.03.005CrossRefGoogle ScholarPubMed
Leonard, BE, Song, C. Stress, depression, and the role of cytokines. Adv Exp Med Biol. 1999;461:251265.CrossRefGoogle ScholarPubMed
Padgett, DA, Glaser, R. How stress influences the immune response. Trends Immunol. 2003;24(8):444448.CrossRefGoogle ScholarPubMed
Bae, YS, et al. Editorial: stress and immunity. Front Immunol. 2019;10:245 CrossRefGoogle ScholarPubMed
Kim, YK, et al. The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2016;64:277284.CrossRefGoogle ScholarPubMed
Horowitz, MA, Zunszain, PA. Neuroimmune and neuroendocrine abnormalities in depression: two sides of the same coin. Ann N Y Acad Sci. 2015;1351:6879.CrossRefGoogle ScholarPubMed
Fries, GR, et al. Revisiting inflammation in bipolar disorder. Pharmacol Biochem Behav. 2019;177:1219.CrossRefGoogle ScholarPubMed
Dahl, J, et al. The plasma levels of various cytokines are increased during ongoing depression and are reduced to normal levels after recovery. Psychoneuroendocrinology. 2014;45:7786.10.1016/j.psyneuen.2014.03.019CrossRefGoogle ScholarPubMed
Cohen, S, Manuck, SB. Stress, reactivity, and disease. Psychosom Med. 1995;57(5):423426.CrossRefGoogle ScholarPubMed
Connor, TJ, Leonard, BE. Depression, stress and immunological activation: the role of cytokines in depressive disorders. Life Sci. 1998;62(7):583606.CrossRefGoogle ScholarPubMed
Pariante, CM, Miller, AH. Glucocorticoid receptors in major depression: relevance to pathophysiology and treatment. Biol Psychiatry. 2001;49(5):391404.CrossRefGoogle ScholarPubMed
Maes, M, et al. Relationships between increased haptoglobin plasma levels and activation of cell-mediated immunity in depression. Biol Psychiatry. 1993;34(10):690701.CrossRefGoogle ScholarPubMed
Maes, M. A review on the acute phase response in major depression. Rev Neurosci. 1993;4(4):407416.CrossRefGoogle ScholarPubMed
Maes, M, et al. Relationships between interleukin-6 activity, acute phase proteins, and function of the hypothalamic-pituitary-adrenal axis in severe depression. Psychiatry Res. 1993;49(1):1127.CrossRefGoogle ScholarPubMed
Musselman, DL, Miller, AH, Porter, MR, Manatunga, A, Gao, F, Penna, S, et al. (August 2001). “Higher than normal plasma interleukin-6 concentrations in cancer patients with depression: preliminary findings”. The American Journal of Psychiatry. 158(8):1252–7.CrossRefGoogle Scholar
Zhou, D, et al. Exposure to physical and psychological stressors elevates plasma interleukin 6: relationship to the activation of hypothalamic-pituitary-adrenal axis. Endocrinology. 1993;133(6):25232530.10.1210/endo.133.6.8243274CrossRefGoogle Scholar
Besedovsky, HO, Rey, d, A. Immune-neuro-endocrine interactions: facts and hypotheses. Endocr Rev. 1996;17(1):64102.CrossRefGoogle ScholarPubMed
Besedovsky, H, et al. Immunoregulatory feedback between interleukin-1 and glucocorticoid hormones. Science. 1986;233(4764):652654.CrossRefGoogle ScholarPubMed
Schulte, HM, et al. Systemic interleukin-1 alpha and interleukin-2 secretion in response to acute stress and to corticotropin-releasing hormone in humans. Eur J Clin Invest. 1994;24(11):773777.10.1111/j.1365-2362.1994.tb01075.xCrossRefGoogle ScholarPubMed
Pace, TW, Hu, F, Miller, AH. Cytokine-effects on glucocorticoid receptor function: relevance to glucocorticoid resistance and the pathophysiology and treatment of major depression. Brain Behav Immun. 2007;21(1):919.CrossRefGoogle ScholarPubMed
Cai, W, et al. Interferon-alpha-induced modulation of glucocorticoid and serotonin receptors as a mechanism of depression. J Hepatol. 2005;42(6):880887.10.1016/j.jhep.2005.01.024CrossRefGoogle ScholarPubMed
Irwin, MR, Miller, AH. Depressive disorders and immunity: 20 years of progress and discovery. Brain Behav Immun. 2007;21(4):374383.CrossRefGoogle ScholarPubMed
Raison, CL, Miller, AH. When not enough is too much: the role of insufficient glucocorticoid signaling in the pathophysiology of stress-related disorders. Am J Psychiatry. 2003;160(9):15541565.CrossRefGoogle ScholarPubMed
Ali, F, Nemeroff, CB. Neuroendocrine Alterations in Major Depressive Disorder Major Depressive Disorder. Elsevier; 2020.Google Scholar
Rein, T, Ambree, O, Fries, GR, Rappeneau, V, Schmidt, U, Touma, C. The hypothalamic-pituitary-adrenal axis in depression: molecular regulation, pathophysiological role, and translational implications. In: Editor(s): Joao Quevedo, Andre F. Carvalho, Carlos A. Zarate, Neurobiology of Depression. Road to Novel Therapeutics; 2019:8996.CrossRefGoogle Scholar
Marazziti, D, et al. Metabolic syndrome and major depression. CNS Spectr. 2014;19(4):293304.CrossRefGoogle ScholarPubMed
Dell'Osso, L, et al. Gender effect on the relationship between stress hormones and panic-agoraphobic spectrum dimensions in healthy subjects. CNS Spectr. 2012;17(4):214220.CrossRefGoogle ScholarPubMed
Marazziti, D, Barberi, FM, Mucci, F, Maglio, A, Dell’Oste, V, Dell’Osso, L. The emerging role of atrial natriuretic peptide in psychiatry. Curr Med Chem. 2020 Feb 18. doi: 10.2174/0929867327666200219091102. Epub ahead of print. PMID: 32072888.CrossRefGoogle Scholar
Rush, AJ, et al. The dexamethasone suppression test in patients with mood disorders. J Clin Psychiatry. 1996;57(10):470484.10.4088/JCP.v57n1006CrossRefGoogle ScholarPubMed
Dratcu, L, Calil, HM. The dexamethasone suppression test: its relationship to diagnoses, severity of depression and response to treatment. Prog Neuropsychopharmacol Biol Psychiatry. 1989;13(1–2):99117.CrossRefGoogle ScholarPubMed
Ettigi, PG, et al. d-Amphetamine response and dexamethasone suppression test as predictors of treatment outcome in unipolar depression. Biol Psychiatry. 1983;18(4):499504.Google ScholarPubMed
Hayes, PE, Ettigi, P. Dexamethasone suppression test in diagnosis of depressive illness. Clin Pharm. 1983;2(6):538545.Google ScholarPubMed
Heemskerk, JW, Mattheij, NJ, Cosemans, JM. Platelet-based coagulation: different populations, different functions. J Thromb Haemost. 2013;11(1):216.CrossRefGoogle ScholarPubMed
Mazepa, M, Hoffman, M, Monroe, D. Superactivated platelets: thrombus regulators, thrombin generators, and potential clinical targets. Arterioscler Thromb Vasc Biol. 2013;33(8):17471752.CrossRefGoogle ScholarPubMed
Panteleev, MA, et al. Two subpopulations of thrombin-activated platelets differ in their binding of the components of the intrinsic factor X-activating complex. J Thromb Haemost. 2005;3(11):25452553.10.1111/j.1538-7836.2005.01616.xCrossRefGoogle ScholarPubMed
Sodergren, AL, Ramstrom, S. Platelet subpopulations remain despite strong dual agonist stimulation and can be characterised using a novel six-colour flow cytometry protocol. Sci Rep. 2018;8(1):1441 CrossRefGoogle ScholarPubMed
Li, C, et al. Crosstalk between platelets and the immune system: old systems with new discoveries. Adv Hematol. 2012;2012:384685 CrossRefGoogle ScholarPubMed
Smith, TL, Weyrich, AS. Platelets as central mediators of systemic inflammatory responses. Thromb Res. 2011;127(5):391394.CrossRefGoogle ScholarPubMed
Lam, FW, et al. Platelets enhance neutrophil transendothelial migration via P-selectin glycoprotein ligand-1. Am J Physiol Heart Circ Physiol. 2011;300(2):H468H475.CrossRefGoogle ScholarPubMed
Unsworth, AJ, et al. Submaximal inhibition of protein kinase C restores ADP-induced dense granule secretion in platelets in the presence of Ca2+. J Biol Chem. 2011;286(24):2107321082.CrossRefGoogle ScholarPubMed
Prescott, SM, Zimmerman, GA, McIntyre, TM. Platelet-activating factor. J Biol Chem. 1990;265(29):1738117384.CrossRefGoogle ScholarPubMed
Prescott, SM, McIntyre, TM, Zimmerman, GA. The role of platelet-activating factor in endothelial cells. Thromb Haemost. 1990;64(1):99103.Google ScholarPubMed
Whatley, RE, et al. Synthesis of platelet-activating factor by endothelial cells. The role of G proteins. J Biol Chem. 1990;265(26):1555015559.CrossRefGoogle ScholarPubMed
Weyrich, AS, et al. Change in protein phenotype without a nucleus: translational control in platelets. Semin Thromb Hemost. 2004;30(4):491498.CrossRefGoogle ScholarPubMed
Weyrich, AS, Zimmerman, GA. Platelets: signaling cells in the immune continuum. Trends Immunol. 2004;25(9):489495.CrossRefGoogle ScholarPubMed
Smorąg, I, Baj, Z. Nonhemostatic role of platelets. Diagnostyka Laboratoryjna. 2008;44:241248.Google Scholar
Vieira-de-Abreu, A, et al. Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum. Semin Immunopathol. 2012;34(1):530.CrossRefGoogle ScholarPubMed
Weyrich, AS, Lindemann, S, Zimmerman, GA. The evolving role of platelets in inflammation. J Thromb Haemost. 2003;1(9):18971905.10.1046/j.1538-7836.2003.00304.xCrossRefGoogle ScholarPubMed
Zimmerman, GA, Weyrich, AS. Signal-dependent protein synthesis by activated platelets: new pathways to altered phenotype and function. Arterioscler Thromb Vasc Biol. 2008;28(3):s17s24.CrossRefGoogle ScholarPubMed
Amelirad, A, et al. Signaling pathways of receptors involved in platelet activation and shedding of these receptors in stored platelets. Adv Pharm Bull. 2019;9(1):3847.CrossRefGoogle ScholarPubMed
Celi, A, et al. P-selectin induces the expression of tissue factor on monocytes. Proc Natl Acad Sci USA. 1994;91(19):87678771.CrossRefGoogle ScholarPubMed
Weyrich, AS, et al. Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates. Circulation. 2005;111(5):633642.CrossRefGoogle ScholarPubMed
Dixon, DA, et al. Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling. J Clin Invest. 2006;116(10):27272738.CrossRefGoogle ScholarPubMed
Gawaz, M, et al. Platelet activation and interaction with leucocytes in patients with sepsis or multiple organ failure. Eur J Clin Invest. 1995;25(11):843851.CrossRefGoogle ScholarPubMed
Weyrich, AS, et al. Activated platelets signal chemokine synthesis by human monocytes. J Clin Invest. 1996;97(6):15251534.CrossRefGoogle ScholarPubMed
Zimmerman, GA, et al. Platelet-activating factor (PAF): signalling and adhesion in cell-cell interactions. Adv Exp Med Biol. 1996;416:297304.CrossRefGoogle ScholarPubMed
Denis, MM, et al. Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets. Cell. 2005;122(3):379391.CrossRefGoogle ScholarPubMed
Qian, K, et al. Functional expression of IgA receptor FcalphaRI on human platelets. J Leukoc Biol. 2008;84(6):14921500.CrossRefGoogle ScholarPubMed
Gerrits, AJ, et al. Platelet tissue factor synthesis in type 2 diabetic patients is resistant to inhibition by insulin. Diabetes. 2010;59(6):14871495.CrossRefGoogle ScholarPubMed
Schwertz, H, et al. Signal-dependent splicing of tissue factor pre-mRNA modulates the thrombogenicity of human platelets. J Exp Med. 2006;203(11):24332440.CrossRefGoogle ScholarPubMed
Geue, S, et al. Pivotal role of PDK1 in megakaryocyte cytoskeletal dynamics and polarization during platelet biogenesis. Blood. 2019;134(21):18471858.CrossRefGoogle ScholarPubMed
Cecchetti, L, et al. Megakaryocytes differentially sort mRNAs for matrix metalloproteinases and their inhibitors into platelets: a mechanism for regulating synthetic events. Blood. 2011;118(7):19031911.CrossRefGoogle ScholarPubMed
Rowley, JW, Schwertz, H, Weyrich, AS. Platelet mRNA: the meaning behind the message. Curr Opin Hematol. 2012;19(5):385391.CrossRefGoogle ScholarPubMed
Catricala, S, Torti, M, Ricevuti, G. Alzheimer disease and platelets: how's that relevant. Immun Ageing. 2012;9(1):20 CrossRefGoogle ScholarPubMed
Talib, LL, Joaquim, HP, Forlenza, OV. Platelet biomarkers in Alzheimer's disease. World J Psychiatry. 2012;2(6):95101.CrossRefGoogle ScholarPubMed
Pletscher, A, Laubscher, A. Blood platelets as models for neurons: uses and limitations. J Neural Transm Suppl. 1980;(16):716.Google ScholarPubMed
Stahl, SM, Meltzer, HY. A kinetic and pharmacologic analysis of 5-hydroxytryptamine transport by human platelets and platelet storage granules: comparison with central serotonergic neurons. J Pharmacol Exp Ther. 1978;205(1):118132.Google ScholarPubMed
Castrogiovanni, P, et al. Platelet serotonergic markers and aggressive behaviour in healthy subjects. Neuropsychobiology. 1994;29(3):105107.CrossRefGoogle ScholarPubMed
Castrogiovanni, P, et al. Personality features and platelet 3H-imipramine binding. Neuropsychobiology. 1992;25(1):1113.CrossRefGoogle ScholarPubMed
Dell'Osso, L, et al. Depression, serotonin and tryptophan. Curr Pharm Des. 2016;22(8):949954.CrossRefGoogle ScholarPubMed
Marazziti, D. Depression and serotonin: a never ending story. Curr Drug Targets. 2013;14(5):513 CrossRefGoogle ScholarPubMed
Marazziti, D, et al. A link between oxytocin and serotonin in humans: supporting evidence from peripheral markers. Eur Neuropsychopharmacol. 2012;22(8):578583.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Impulsivity, gender, and the platelet serotonin transporter in healthy subjects. Neuropsychiatr Dis Treat. 2010;6:915.Google ScholarPubMed
Marazziti, D, et al. New developments on the serotonin hypothesis of depression: shunt of tryptophan. Riv Psichiatr. 2013;48(1):2334.Google ScholarPubMed
Marazziti, D, et al. Decreased platelet [3H]paroxetine binding sites in suicide attempters. Psychiatry Res. 2001;103(2–3):125131.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Decreased density of the platelet serotonin transporter in pathological gamblers. Neuropsychobiology. 2008;57(1–2):3843.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Peripheral markers of serotonin and dopamine function in obsessive-compulsive disorder. Psychiatry Res. 1992;42(1):4151.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. The role of platelet/lymphocyte serotonin transporter in depression and beyond. Curr Drug Targets. 2013;14(5):522530.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Decreased platelet serotonin uptake in bipolar I patients. Int Clin Psychopharmacol. 1991;6(1):2530.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Changes in platelet markers of obsessive-compulsive patients during a double-blind trial of fluvoxamine versus clomipramine. Pharmacopsychiatry. 1997;30(6):245249.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Platelet markers in suicide attempters. Prog Neuropsychopharmacol Biol Psychiatry. 1995;19(3):375383.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Decreased platelet 3H-paroxetine binding in untreated panic disorder patients. Life Sci. 1999;65(25):27352741.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Decreased platelet 3H-paroxetine binding in obsessive-compulsive patients. Neuropsychobiology. 1996;34(4):184187.CrossRefGoogle ScholarPubMed
Ramacciotti, CE, et al. Serotonergic activity measured by platelet [3H]paroxetine binding in patients with eating disorders. Psychiatry Res. 2003;118(1):3338.CrossRefGoogle Scholar
Bruce, EC, Musselman, DL. Depression, alterations in platelet function, and ischemic heart disease. Psychosom Med. 2005;67(Suppl 1):S34S36.CrossRefGoogle ScholarPubMed
Dietrich-Muszalska, A, Wachowicz, B. Platelet haemostatic function in psychiatric disorders: effects of antidepressants and antipsychotic drugs. World J Biol Psychiatry. 2017;18(8):564574.CrossRefGoogle ScholarPubMed
Nair, GV, et al. Depression, coronary events, platelet inhibition, and serotonin reuptake inhibitors. Am J Cardiol. 1999;84(3):321323, A8.Google ScholarPubMed
Mazereeuw, G, et al. Platelet activating factors in depression and coronary artery disease: a potential biomarker related to inflammatory mechanisms and neurodegeneration. Neurosci Biobehav Rev. 2013;37(8):16111621.CrossRefGoogle ScholarPubMed
Mendelson, SD. The current status of the platelet 5-HT(2A) receptor in depression. J Affect Disord. 2000;57(1–3):1324.CrossRefGoogle ScholarPubMed
Parakh, K, et al. Platelet function in patients with depression. South Med J. 2008;101(6):612617.CrossRefGoogle ScholarPubMed
Ziegelstein, RC, et al. Platelet function in patients with major depression. Intern Med J. 2009;39(1):3843.CrossRefGoogle ScholarPubMed
von Kanel, R. Platelet hyperactivity in clinical depression and the beneficial effect of antidepressant drug treatment: how strong is the evidence? Acta Psychiatr Scand. 2004;110(3):163177.CrossRefGoogle ScholarPubMed
Williams, MS. Platelets and depression in cardiovascular disease: a brief review of the current literature. World J Psychiatry. 2012;2(6):114123.CrossRefGoogle ScholarPubMed
Laghrissi-Thode, F, et al. Elevated platelet factor 4 and beta-thromboglobulin plasma levels in depressed patients with ischemic heart disease. Biol Psychiatry. 1997;42(4):290295.CrossRefGoogle ScholarPubMed
Pollock, BG, Laghrissi-Thode, F, Wagner, WR. Evaluation of platelet activation in depressed patients with ischemic heart disease after paroxetine or nortriptyline treatment. J Clin Psychopharmacol. 2000;20(2):137140.CrossRefGoogle ScholarPubMed
Chen, M, et al. Platelets are the primary source of amyloid beta-peptide in human blood. Biochem Biophys Res Commun. 1995;213(1):96103.CrossRefGoogle ScholarPubMed
Piletz, JE, et al. Elevated P-selectin on platelets in depression: response to bupropion. J Psychiatr Res. 2000;34(6):397404.CrossRefGoogle ScholarPubMed
Markovitz, JH, et al. Platelet activation in depression and effects of sertraline treatment: an open-label study. Am J Psychiatry. 2000;157(6):10061008.CrossRefGoogle Scholar
Li, QX, et al. Membrane-associated forms of the beta A4 amyloid protein precursor of Alzheimer's disease in human platelet and brain: surface expression on the activated human platelet. Blood. 1994;84(1):133142.CrossRefGoogle ScholarPubMed
Musselman, DL, et al. Exaggerated platelet reactivity in major depression. Am J Psychiatry. 1996;153(10):13131317.Google ScholarPubMed
Pomara, N, et al. Elevation in plasma Abeta42 in geriatric depression: a pilot study. Neurochem Res. 2006;31(3):341349.CrossRefGoogle ScholarPubMed
Pomara, N, Murali Doraiswamy, P. Does increased platelet release of Abeta peptide contribute to brain abnormalities in individuals with depression? Med Hypotheses. 2003;60(5):640643.CrossRefGoogle ScholarPubMed
Espinosa-Parrilla, Y, et al. Decoding the role of platelets and related microRNAs in aging and neurodegenerative disorders. Front Aging Neurosci. 2019;11:151 CrossRefGoogle ScholarPubMed
Jones, CI. Platelet function and ageing. Mamm Genome. 2016;27(7–8):358366.CrossRefGoogle ScholarPubMed
Tomaiuolo, M, Brass, LF, Stalker, TJ. Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis. Interv Cardiol Clin. 2017;6(1):112.Google ScholarPubMed
Ross, R. Atherosclerosis—an inflammatory disease. N Engl J Med. 1999;340(2):115126.CrossRefGoogle ScholarPubMed
Moyer, CF, et al. Synthesis of IL-1 alpha and IL-1 beta by arterial cells in atherosclerosis. Am J Pathol. 1991;138(4):951960.Google ScholarPubMed
Gehi, A, et al. Depression and platelet activation in outpatients with stable coronary heart disease: findings from the heart and soul study. Psychiatry Res. 2010;175(3):200204.CrossRefGoogle ScholarPubMed
Williams, MS, et al. Platelet serotonin signaling in patients with cardiovascular disease and comorbid depression. Psychosom Med. 2019;81(4):352362.CrossRefGoogle ScholarPubMed
Kuijpers, PM, et al. Beta-thromboglobulin and platelet factor 4 levels in post-myocardial infarction patients with major depression. Psychiatry Res. 2002;109(2):207210.CrossRefGoogle ScholarPubMed
Schins, A, et al. Whole blood serotonin and platelet activation in depressed post-myocardial infarction patients. Life Sci. 2004;76(6):637650.CrossRefGoogle ScholarPubMed
Serebruany, VL, et al. Enhanced platelet/endothelial activation in depressed patients with acute coronary syndromes: evidence from recent clinical trials. Blood Coagul Fibrinolysis. 2003;14(6):563567.CrossRefGoogle ScholarPubMed
Liberati, A, et al. The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. J Clin Epidemiol. 2009;62(10):e1e34.CrossRefGoogle ScholarPubMed
Owens, MJ, Nemeroff, CB. Role of serotonin in the pathophysiology of depression: focus on the serotonin transporter. Clin Chem. 1994;40(2):288295.CrossRefGoogle ScholarPubMed
Skop, BP, Brown, TM. Potential vascular and bleeding complications of treatment with selective serotonin reuptake inhibitors. Psychosomatics. 1996;37(1):1216.CrossRefGoogle ScholarPubMed
Walther, DJ, et al. Serotonylation of small GTPases is a signal transduction pathway that triggers platelet alpha-granule release. Cell. 2003;115(7):851862.CrossRefGoogle ScholarPubMed
Schins, A, et al. Increased coronary events in depressed cardiovascular patients: 5-HT2A receptor as missing link? Psychosom Med. 2003;65(5):729737.CrossRefGoogle ScholarPubMed
Heger, CD, Collins, RN. Platelet activation and "crossover appeal": Rab and Rho families united by common links to serotonin. Mol Interv. 2004;4(2):7981.CrossRefGoogle ScholarPubMed
Cowen, PJ, et al. Platelet 5-HT receptor binding during depressive illness and tricyclic antidepressant treatment. J Affect Disord. 1987;13(1):4550.CrossRefGoogle ScholarPubMed
Sheline, YI, et al. Platelet binding characteristics distinguish placebo responders from nonresponders in depression. Neuropsychopharmacology. 1995;12(4):315322.CrossRefGoogle ScholarPubMed
Bakish, D, et al. Effects of selective serotonin reuptake inhibitors on platelet serotonin parameters in major depressive disorder. Biol Psychiatry. 1997;41(2):184190.CrossRefGoogle ScholarPubMed
Alvarez, JC, et al. Decreased platelet serotonin transporter sites and increased platelet inositol triphosphate levels in patients with unipolar depression: effects of clomipramine and fluoxetine. Clin Pharmacol Ther. 1999;66(6):617624.CrossRefGoogle ScholarPubMed
Stain-Malmgren, R, et al. Serotonergic function in major depression and effect of sertraline and paroxetine treatment. Int Clin Psychopharmacol. 2001;16(2):93101.CrossRefGoogle ScholarPubMed
Biegon, A, et al. Serotonin 5-HT2 receptor binding on blood platelets—a peripheral marker for depression? Life Sci. 1987;41(22):24852492.CrossRefGoogle Scholar
Pandey, GN, et al. Platelet serotonin-2 receptor binding sites in depression and suicide. Biol Psychiatry. 1990;28(3):215222.CrossRefGoogle ScholarPubMed
Hrdina, PD, et al. Platelet serotonergic indices in major depression: up-regulation of 5-HT2A receptors unchanged by antidepressant treatment. Psychiatry Res. 1997;66(2–3):7385.CrossRefGoogle ScholarPubMed
McBride, PA, et al. The relationship of platelet 5-HT2 receptor indices to major depressive disorder, personality traits, and suicidal behavior. Biol Psychiatry. 1994;35(5):295308.CrossRefGoogle ScholarPubMed
Neuger, J, et al. Platelet serotonin functions in untreated major depression. Psychiatry Res. 1999;85(2):189198.CrossRefGoogle ScholarPubMed
Roggenbach, J, et al. Peripheral serotonergic markers in acutely suicidal patients. 1. Comparison of serotonergic platelet measures between suicidal individuals, nonsuicidal patients with major depression and healthy subjects. J Neural Transm (Vienna). 2007;114(4):479487.CrossRefGoogle ScholarPubMed
Blaschko, H. Amine oxidase and amine metabolism. Pharmacol Rev. 1952;4, 4:415458.Google ScholarPubMed
Arora, RC, Meltzer, HY. Increased serotonin2 (5-HT2) receptor binding as measured by 3H-lysergic acid diethylamide (3H-LSD) in the blood platelets of depressed patients. Life Sci. 1989;44(11):725734.CrossRefGoogle ScholarPubMed
Sheline, YI, et al. Platelet serotonin markers and depressive symptomatology. Biol Psychiatry. 1995;37(7):442447.CrossRefGoogle ScholarPubMed
Hrdina, PD, et al. Serotonergic markers in platelets of patients with major depression: upregulation of 5-HT2 receptors. J Psychiatry Neurosci. 1995;20(1):1119.Google ScholarPubMed
Rosel, P, et al. Altered [3H]imipramine and 5-HT2 but not [3H]paroxetine binding sites in platelets from depressed patients. J Affect Disord. 1999;52(1–3):225233.CrossRefGoogle Scholar
Allen, JA, Halverson-Tamboli, RA, Rasenick, MM. Lipid raft microdomains and neurotransmitter signalling. Nat Rev Neurosci. 2007;8(2):128140.CrossRefGoogle ScholarPubMed
Blakely, RD, et al. Cloning and expression of a functional serotonin transporter from rat brain. Nature. 1991;354(6348):6670.CrossRefGoogle ScholarPubMed
Hoffman, BJ, Mezey, E, Brownstein, MJ. Cloning of a serotonin transporter affected by antidepressants. Science. 1991;254(5031):579580.CrossRefGoogle ScholarPubMed
Ramamoorthy, S, et al. Antidepressant- and cocaine-sensitive human serotonin transporter: molecular cloning, expression, and chromosomal localization. Proc Natl Acad Sci USA. 1993;90(6):25422546.CrossRefGoogle ScholarPubMed
Lesch, KP, et al. Primary structure of the serotonin transporter in unipolar depression and bipolar disorder. Biol Psychiatry. 1995;37(4):215223.CrossRefGoogle ScholarPubMed
Lesch, KP, et al. Primary structure of the human platelet serotonin uptake site: identity with the brain serotonin transporter. J Neurochem. 1993;60(6):23192322.CrossRefGoogle ScholarPubMed
Nobile, M, et al. Effects of serotonin transporter promoter genotype on platelet serotonin transporter functionality in depressed children and adolescents. J Am Acad Child Adolesc Psychiatry. 1999;38(11):13961402.CrossRefGoogle ScholarPubMed
Maitre, L, et al. Amine uptake inhibitors: criteria of selectivity. Acta Psychiatr Scand. 1980;61(S280):97110.CrossRefGoogle ScholarPubMed
Heinz, A, et al. A relationship between serotonin transporter genotype and in vivo protein expression and alcohol neurotoxicity. Biol Psychiatry. 2000;47(7):643649.CrossRefGoogle ScholarPubMed
Little, KY, et al. Cocaine, ethanol, and genotype effects on human midbrain serotonin transporter binding sites and mRNA levels. Am J Psychiatry. 1998;155(2):207213.Google ScholarPubMed
Lingjaerde, O. From clomipramine to mianserin: therapeutic relevance of interactions with serotonin uptake and storage, as studied in the blood platelet model. Acta Psychiatr Scand Suppl. 1985;320:1019.CrossRefGoogle ScholarPubMed
Pearse, AG. The diffuse neuroendocrine system: peptides, amines, placodes and the APUD theory. Prog Brain Res. 1986;68:2531.CrossRefGoogle ScholarPubMed
Briley, MS, et al. Tritiated imipramine binding sites are decreased in platelets of untreated depressed patients. Science. 1980;209(4453):303305.CrossRefGoogle ScholarPubMed
Backstrom, IT, Marcusson, JO. 5-Hydroxytryptamine-sensitive [3H]imipramine binding of protein nature in the human brain. I. Characteristics. Brain Res. 1987;425(1):128136.CrossRefGoogle ScholarPubMed
Marcusson, JO, et al. 5-Hydroxytryptamine-sensitive [3H]imipramine binding of protein nature in the human brain. II. Effect of normal aging and dementia disorders. Brain Res. 1987;425(1):137145.CrossRefGoogle ScholarPubMed
Mann, JJ, et al. Lower 3H-paroxetine binding in cerebral cortex of suicide victims is partly due to fewer high affinity, non-transporter sites. J Neural Transm (Vienna). 1996;103(11):13371350.CrossRefGoogle ScholarPubMed
Plenge, P, Mellerup, ET, Gjerris, A. Imipramine binding in depressive patients diagnosed according to different criteria. Acta Psychiatr Scand. 1988;78(2):156161.CrossRefGoogle ScholarPubMed
Hrdina, PD, et al. Platelet 3H imipramine binding: a possible predictor of response to antidepressant treatment. Prog Neuropsychopharmacol Biol Psychiatry. 1985;9(5–6):619623.CrossRefGoogle ScholarPubMed
Maj, M, et al. Changes in platelet 3H-imipramine binding in depressed patients receiving electroconvulsive therapy. Biol Psychiatry. 1988;24(4):469472.CrossRefGoogle ScholarPubMed
Roy, A, et al. Platelet tritiated imipramine binding and serotonin uptake in depressed patients and controls. Relationship to plasma cortisol levels before and after dexamethasone administration. Arch Gen Psychiatry. 1987;44(4):320327.CrossRefGoogle ScholarPubMed
Rehavi, M, et al. High-affinity 3H-imipramine binding in platelets of children and adolescents with major affective disorders. Psychiatry Res. 1984;13(1):3139.CrossRefGoogle ScholarPubMed
Lawrence, KM, et al. Platelet 5-HT uptake sites in depression: three concurrent measures using [3H] imipramine and [3H] paroxetine. Psychopharmacology (Berl). 1993;110(1–2):235239.CrossRefGoogle Scholar
Nemeroff, CB, et al. Marked reduction in the number of platelet-tritiated imipramine binding sites in geriatric depression. Arch Gen Psychiatry. 1988;45(10):919923.CrossRefGoogle ScholarPubMed
Wagner, A, et al. Lower 3H-imipramine binding in platelets from untreated depressed patients compared to healthy controls. Psychiatry Res. 1985;16(2):131139.CrossRefGoogle ScholarPubMed
Nankai, M, et al. Platelet [3H]imipramine binding in depressed patients and its circadian variations in healthy controls. J Affect Disord. 1986;11(3):207212.CrossRefGoogle ScholarPubMed
Jeanningros, R, et al. Platelet [3H]-imipramine binding according to DSM-III subtypes of depression. Neuropsychobiology. 1989;22(1):3340.CrossRefGoogle ScholarPubMed
Ellis, PM, et al. Platelet tritiated imipramine binding in psychiatric patients: relationship to symptoms and severity of depression. Acta Psychiatr Scand. 1990;82(4):275282.CrossRefGoogle ScholarPubMed
Nemeroff, CB. The presynaptic serotonin uptake site in depression. Clin Neuropharmacol. 1992;15(Suppl 1 Pt A):347A348A.CrossRefGoogle ScholarPubMed
Nemeroff, CB, et al. Further studies on platelet serotonin transporter binding in depression. Am J Psychiatry. 1994;151(11):16231625.Google ScholarPubMed
Iny, LJ, et al. Studies of a neurochemical link between depression, anxiety, and stress from [3H]imipramine and [3H]paroxetine binding on human platelets. Biol Psychiatry. 1994;36(5):281291.CrossRefGoogle Scholar
Rosel, P, et al. Platelet [3H]imipramine and [3H]paroxetine binding in depressed patients. J Affect Disord. 1997;44(1):7985.CrossRefGoogle Scholar
D'Haenen, H, De Waele, M, Leysen, JE. Platelet 3H-paroxetine binding in depressed patients. Psychiatry Res. 1988;26(1):1117.CrossRefGoogle ScholarPubMed
Nankai, M, et al. Platelet 3H-paroxetine binding in control subjects and depressed patients: relationship to serotonin uptake and age. Psychiatry Res. 1994;51(2):147155.CrossRefGoogle ScholarPubMed
D'Hondt, P, et al. Binding of [3H]paroxetine to platelets of depressed patients: seasonal differences and effects of diagnostic classification. J Affect Disord. 1994;32(1):2735.CrossRefGoogle Scholar
Sallee, FR, et al. Platelet serotonin transporter in depressed children and adolescents: 3H-paroxetine platelet binding before and after sertraline. J Am Acad Child Adolesc Psychiatry. 1998;37(7):777784.CrossRefGoogle ScholarPubMed
Fisar, Z, et al. Platelet serotonin uptake in drug-naive depressive patients before and after treatment with citalopram. Psychiatry Res. 2008;161(2):185194.CrossRefGoogle ScholarPubMed
Schlake, HP, et al. Platelet 5-HT transport in depressed patients under double-blind treatment with paroxetine versus amitriptyline. Acta Psychiatr Scand Suppl. 1989;350:149151.CrossRefGoogle ScholarPubMed
Franke, L, et al. Serotonergic platelet variables in unmedicated patients suffering from major depression and healthy subjects: relationship between 5HT content and 5HT uptake. Life Sci. 2000;67(3):301315.CrossRefGoogle ScholarPubMed
Franke, L, et al. Platelet-5HT uptake and gastrointestinal symptoms in patients suffering from major depression. Life Sci. 2003;74(4):521531.CrossRefGoogle ScholarPubMed
Uebelhack, R, et al. Brain and platelet serotonin transporter in humans-correlation between [123I]-ADAM SPECT and serotonergic measurements in platelets. Neurosci Lett. 2006;406(3):153158.CrossRefGoogle Scholar
Zhuang, X, et al. Platelet serotonin and serotonin transporter as peripheral surrogates in depression and anxiety patients. Eur J Pharmacol. 2018;834:213220.CrossRefGoogle ScholarPubMed
Marazziti, D. What came first: dimensions or categories? Br J Psychiatry. 2001;178:478479.CrossRefGoogle ScholarPubMed
Le Quan-Bui, KH, et al. Reduced platelet serotonin in depression. Psychiatry Res. 1984;13(2):129139.CrossRefGoogle ScholarPubMed
Pivac, N, et al. Long-term sertraline treatment and peripheral biochemical markers in female depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2003;27(5):759765.CrossRefGoogle ScholarPubMed
Maurer-Spurej, E, Pittendreigh, C, Misri, S. Platelet serotonin levels support depression scores for women with postpartum depression. J Psychiatry Neurosci. 2007;32(1):2329.Google ScholarPubMed
Karege, F, et al. Platelet serotonin and plasma tryptophan in depressed patients: effect of drug treatment and clinical outcome. Neuropsychopharmacology. 1994;10(3):207214.CrossRefGoogle ScholarPubMed
Muck-Seler, D, et al. The effects of paroxetine and tianeptine on peripheral biochemical markers in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2002;26(7–8):12351243.CrossRefGoogle ScholarPubMed
Muck-Seler, D, et al. Effect of age on platelet 5-HT concentrations in healthy controls, depressed and schizophrenic patients. Neuropsychobiology. 1996;34(4):201203.CrossRefGoogle ScholarPubMed
Muck-Seler, D, Jakovljevic, M, Pivac, N. Platelet 5-HT concentrations and suicidal behaviour in recurrent major depression. J Affect Disord. 1996;39(1):7380.CrossRefGoogle ScholarPubMed
Zahn, D, et al. Cortisol, platelet serotonin content, and platelet activity in patients with major depression and type 2 diabetes: an exploratory investigation. Psychosom Med. 2015;77(2):145155.CrossRefGoogle ScholarPubMed
Muck-Seler, D, et al. Platelet serotonin and plasma prolactin and cortisol in healthy, depressed and schizophrenic women. Psychiatry Res. 2004;127(3):217226.CrossRefGoogle ScholarPubMed
Sarrias, MJ, Artigas, F, Martinez, E, et al. Decreased plasma serotonin in melancholic patients: a study with clomipramine. Biol Psychiatry. 1987;22(12):14291438.CrossRefGoogle ScholarPubMed
Cottingham, C, Wang, Q. alpha2 adrenergic receptor dysregulation in depressive disorders: implications for the neurobiology of depression and antidepressant therapy. Neurosci Biobehav Rev. 2012;36(10):22142225.CrossRefGoogle ScholarPubMed
Stahl, SM, et al. Platelet alpha 2-adrenergic receptor sensitivity in major depressive disorder. Psychiatry Res. 1983;10(3):157164.CrossRefGoogle ScholarPubMed
Siess, W, Lapetina, EG. Platelet aggregation induced by alpha 2-adrenoceptor and protein kinase C activation. A novel synergism. Biochem J. 1989;263(2):377385.CrossRefGoogle ScholarPubMed
Garcia-Sevilla, JA, et al. Biochemical and functional evidence of supersensitive platelet alpha 2-adrenoceptors in major affective disorder. Effect of long-term lithium carbonate treatment. Arch Gen Psychiatry. 1986;43(1):5157.CrossRefGoogle ScholarPubMed
Garcia-Sevilla, JA, et al. Platelet alpha 2-adrenergic receptors in major depressive disorder. Binding of tritiated clonidine before and after tricyclic antidepressant drug treatment. Arch Gen Psychiatry. 1981;38(12):13271333.CrossRefGoogle ScholarPubMed
Smith, CB, et al. Platelet alpha 2 adrenoreceptors are decreased in number after antidepressant therapy. Prog Neuropsychopharmacol Biol Psychiatry. 1983;7(2–3):241247.CrossRefGoogle ScholarPubMed
Pandey, GN, et al. Increased 3H-clonidine binding in the platelets of patients with depressive and schizophrenic disorders. Psychiatry Res. 1989;28(1):7388.CrossRefGoogle ScholarPubMed
Garcia-Sevilla, JA, et al. Enhanced binding of [3H] (−) adrenaline to platelets of depressed patients with melancholia: effect of long-term clomipramine treatment. Acta Psychiatr Scand. 1987;75(2):150157.CrossRefGoogle Scholar
Garcia-Sevilla, JA, et al. Regulation of platelet alpha 2A-adrenoceptors, Gi proteins and receptor kinases in major depression: effects of mirtazapine treatment. Neuropsychopharmacology. 2004;29(3):580588.CrossRefGoogle ScholarPubMed
Gurguis, GN, et al. Platelet alpha2A-adrenoceptor function in major depression: Gi coupling, effects of imipramine and relationship to treatment outcome. Psychiatry Res. 1999;89(2):7395.CrossRefGoogle ScholarPubMed
Piletz, JE, et al. Desipramine lowers tritiated para-aminoclonidine binding in platelets of depressed patients. Arch Gen Psychiatry. 1991;48(9):813820.CrossRefGoogle ScholarPubMed
Piletz, JE, et al. Elevated 3H-para-aminoclonidine binding to platelet purified plasma membranes from depressed patients. Neuropsychopharmacology. 1990;3(3):201210.Google ScholarPubMed
Piletz, JE, et al. Delayed desensitization of alpha 2-adrenoceptor-mediated platelet aggregation in depressed patients. Neuropsychopharmacology. 1993;9(1):5566.CrossRefGoogle ScholarPubMed
Kaneko, M, et al. Platelet alpha-2 adrenergic receptor binding and plasma free 3-methoxy-4-hydroxyphenylethylene glycol in depressed patients before and after treatment with mianserin. Neuropsychobiology. 1992;25(1):1419.CrossRefGoogle ScholarPubMed
Pimoule, C, et al. 3H-Rauwolscine binding in platelets from depressed patients and healthy volunteers. Psychopharmacology (Berl). 1983;79(4):308312.CrossRefGoogle ScholarPubMed
Maes, M, et al. Decreased platelet alpha-2 adrenoceptor density in major depression: effects of tricyclic antidepressants and fluoxetine. Biol Psychiatry. 1999;45(3):278284.CrossRefGoogle ScholarPubMed
Karege, F, et al. Platelet membrane alpha 2-adrenergic receptors in depression. Psychiatry Res. 1992;43(3):243252.CrossRefGoogle ScholarPubMed
Doyle, MC, et al. Platelet alpha 2-adrenoreceptor binding in elderly depressed patients. Am J Psychiatry. 1985;142(12):14891490.Google ScholarPubMed
Carstens, ME, et al. Alpha 2-adrenoceptor levels on platelets of patients with major depressive disorders. Psychiatry Res. 1986;18(4):321331.CrossRefGoogle ScholarPubMed
Marazziti, D, et al. Correlation between platelet alpha(2)-adrenoreceptors and symptom severity in major depression. Neuropsychobiology. 2001;44(3):122125.CrossRefGoogle ScholarPubMed
Karege, F, et al. Adrenaline-induced platelet aggregation in depressed patients and control subjects. Neuropsychobiology. 1993;27(1):2125.CrossRefGoogle ScholarPubMed
Karege, F, et al. Platelet alpha-2 adrenoceptor-mediated primary aggregation and adenylate cyclase inhibition in depressed patients. Lancet. 1993;341(8851):1029 CrossRefGoogle ScholarPubMed
Nugent, DF, Dinan, TG, Leonard, BE. Alteration by a plasma factor(s) of platelet aggregation in unmedicated unipolar depressed patients. J Affect Disord. 1994;31(1):6166.CrossRefGoogle ScholarPubMed
Garcia-Sevilla, JA, et al. Alpha 2-adrenoceptor-mediated inhibition of platelet adenylate cyclase and induction of aggregation in major depression. Effect of long-term cyclic antidepressant drug treatment. Arch Gen Psychiatry. 1990;47(2):125132.CrossRefGoogle ScholarPubMed
McAdams, C, Leonard, BE. Changes in platelet aggregatory responses to collagen and 5-hydroxytryptamine in depressed, schizophrenic and manic patients. Int Clin Psychopharmacol. 1992;7(2):8185.Google ScholarPubMed
Mikuni, M, et al. Serotonin but not norepinephrine-induced calcium mobilization of platelets is enhanced in affective disorders. Psychopharmacology (Berl). 1992;106(3):311314.CrossRefGoogle Scholar
Yeung, AWK, et al. Monoamine oxidases (MAOs) as privileged molecular targets in neuroscience: research literature analysis. Front Mol Neurosci. 2019;12:143 CrossRefGoogle ScholarPubMed
von Knorring, L, Oreland, L, Winblad, B. Personality traits related to monoamine oxidase activity in platelets. Psychiatry Res. 1984;12(1):1126.CrossRefGoogle ScholarPubMed
Oreland, L, Hallman, J, Damberg, M. Platelet MAO and personality—function and dysfunction. Curr Med Chem. 2004;11(15):20072016.CrossRefGoogle Scholar
Oreland, L. Platelet monoamine oxidase, personality and alcoholism: the rise, fall and resurrection. Neurotoxicology. 2004;25(1–2):7989.CrossRefGoogle ScholarPubMed
Eensoo, D, et al. Association of traffic behavior with personality and platelet monoamine oxidase activity in schoolchildren. J Adolesc Health. 2007;40(4):311317.CrossRefGoogle ScholarPubMed
Diaz-Marsa, M, et al. Psychobiology of borderline personality traits related to subtypes of eating disorders: a study of platelet MAO activity. Psychiatry Res. 2011;190(2–3):287290.CrossRefGoogle ScholarPubMed
Lewitzka, U, et al. Is MAO-B activity in platelets associated with the occurrence of suicidality and behavioural personality traits in depressed patients? Acta Psychiatr Scand. 2008;117(1):4149.Google ScholarPubMed
Harro, J, Oreland, L. The role of MAO in personality and drug use. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:101111.CrossRefGoogle ScholarPubMed
Nikolac Perkovic, M, et al. Monoamine oxidase and agitation in psychiatric patients. Prog Neuropsychopharmacol Biol Psychiatry. 2016;69:131146.CrossRefGoogle ScholarPubMed
Naoi, M, Riederer, P, Maruyama, W. Modulation of monoamine oxidase (MAO) expression in neuropsychiatric disorders: genetic and environmental factors involved in type A MAO expression. J Neural Transm (Vienna). 2016;123(2):91106.CrossRefGoogle ScholarPubMed
Pivac, N, et al. Monoamine oxidase (MAO) intron 13 polymorphism and platelet MAO-B activity in combat-related posttraumatic stress disorder. J Affect Disord. 2007;103(1–3):131138.CrossRefGoogle ScholarPubMed
Harris, S, et al. Evidence revealing deregulation of the KLF11-MAO A pathway in association with chronic stress and depressive disorders. Neuropsychopharmacology. 2015;40(6):13731382.CrossRefGoogle ScholarPubMed
Mann, J. Altered platelet monoamine oxidase activity in affective disorders. Psychol Med. 1979;9(4):729736.CrossRefGoogle ScholarPubMed
Quintana, J. Platelet MAO deamination of serotonin in depressed patients. Changes after imipramine treatment and clinical correlations. Biol Psychiatry. 1988;23(1):4452.CrossRefGoogle ScholarPubMed
Gremmel, T, et al. Platelet-specific markers are associated with monocyte-platelet aggregate formation and thrombin generation potential in advanced atherosclerosis. Thromb Haemost. 2016;115(3):615621.Google ScholarPubMed
Pfluecke, C, et al. Atrial fibrillation is associated with high levels of monocyte-platelet-aggregates and increased CD11b expression in patients with aortic stenosis. Thromb Haemost. 2016;115(5):9931000.Google ScholarPubMed
Mitsui, C, et al. Platelet activation markers overexpressed specifically in patients with aspirin-exacerbated respiratory disease. J Allergy Clin Immunol. 2016;137(2):400411.CrossRefGoogle ScholarPubMed
Napoleao P, et al. Changes of soluble CD40 ligand in the progression of acute myocardial infarction associate to endothelial nitric oxide synthase polymorphisms and vascular endothelial growth factor but not to platelet CD62P expression. Transl Res. 2015;166(6):650–659.CrossRefGoogle Scholar
Woo KS, et al. Determination of the prevalence of aspirin and clopidogrel resistances in patients with coronary artery disease by using various platelet-function tests. Korean J Lab Med. 2010:30(5):460–468.CrossRefGoogle Scholar
Lacroix, R, et al. Revisited role of microparticles in arterial and venous thrombosis. J Thromb Haemost. 2013;11(Suppl 1):2435.CrossRefGoogle ScholarPubMed
Musselman, DL, Marzec, UM, Manatunga, A, et al. Platelet reactivity in depressed patients treated with paroxetine: preliminary findings. Arch Gen Psychiatry. 2000;57(9):875882.CrossRefGoogle ScholarPubMed
Musselman, DL, et al. Platelet activation and secretion in patients with major depression, thoracic aortic atherosclerosis, or renal dialysis treatment. Depress Anxiety. 2002;15(3):91101.CrossRefGoogle ScholarPubMed
Walsh, MT, et al. Depression is associated with an increase in the expression of the platelet adhesion receptor glycoprotein Ib. Life Sci. 2002;70(26):31553165.CrossRefGoogle ScholarPubMed
Neubauer, H, et al. Newly diagnosed depression is associated with increased beta-thromboglobulin levels and increased expression of platelet activation markers and platelet derived CD40-CD40L. J Psychiatr Res. 2013;47(7):865871.CrossRefGoogle ScholarPubMed
Maurer-Spurej, E, Pittendreigh, C, Solomons, K. The influence of selective serotonin reuptake inhibitors on human platelet serotonin. Thromb Haemost. 2004;91(1):119128.Google ScholarPubMed
Musselman, DL, Marzec, UM, Manatunga, A, et al. Platelet reactivity in depressed patients treated with paroxetine: preliminary findings. Arch Gen Psychiatry. 2000;57(9):875882.CrossRefGoogle ScholarPubMed
Marazziti, D, Mucci, F, Tripodi, B, Carbone, MG, Muscarella, A, Falaschi, V, Baroni, S. Emotional blunting, cognitive impairment, bone fractures, and bleeding as possible side effects of long-term use of SSRIs. Clin Neuropsychiatry. 2019;16(2):7585. 11p.Google ScholarPubMed
Iwagami, M, Tomlinson, LA, Mansfield, KE, Douglas, IJ, Smeeth, L, Nitsch, D. Gastrointestinal bleeding risk of selective serotonin reuptake inhibitors by level of kidney function: A population-based cohort study. Br J Clin Pharmacol. 2018 Sep;84(9):21422151. doi: 10.1111/bcp.13660. Epub 2018 Jul 8. PMID: 29864791; PMCID: PMC6089824.CrossRefGoogle ScholarPubMed
Katsinelos, P, et al. Are selective serotonin reuptake inhibitors (SSRIs) a risk factor for post-polypectomy bleeding? Endoscopy. 2013;45(8):681 Google ScholarPubMed
Kuo, CY, Liao, YT, Chen, VC. Risk of upper gastrointestinal bleeding when taking SSRIs with NSAIDs or aspirin. Am J Psychiatry. 2014;171(5):582 CrossRefGoogle ScholarPubMed
Laursen, SB, et al. The use of selective serotonin receptor inhibitors (SSRIs) is not associated with increased risk of endoscopy-refractory bleeding, rebleeding or mortality in peptic ulcer bleeding. Aliment Pharmacol Ther. 2017;46(3):355363.CrossRefGoogle ScholarPubMed
Mansour, A, et al. Which patients taking SSRIs are at greatest risk of bleeding? J Fam Pract. 2006;55(3):206208.Google ScholarPubMed
Reeves, RR, Wise, PM, Cox, SK. SSRIs & the risk of abnormal bleeding. J Psychosoc Nurs Ment Health Serv. 2007;45(4):1521.CrossRefGoogle ScholarPubMed
Podrez, EA. Platelet hyperreactivity: a new twist in old mice. Blood. 2019;134(9):723724.CrossRefGoogle ScholarPubMed
Kusumi, I, Koyama, T, Yamashita, I. Serotonin-induced platelet intracellular calcium mobilization in depressed patients. Psychopharmacology (Berl). 1994;113(3–4):322327.CrossRefGoogle ScholarPubMed
Kusumi, I, Koyama, T, Yamashita, I. Serotonin-stimulated Ca2+ response is increased in the blood platelets of depressed patients. Biol Psychiatry. 1991;30(3):310312.CrossRefGoogle ScholarPubMed
Eckert, A, et al. Elevated intracellular calcium levels after 5-HT2 receptor stimulation in platelets of depressed patients. Biol Psychiatry. 1993;34(8):565568.CrossRefGoogle ScholarPubMed
Berk, M, et al. The platelet intracellular calcium response to serotonin is augmented in bipolar manic and depressed patients. Human Psychopharmacol: Clin Exp. 1995;10(3):189193.CrossRefGoogle Scholar
Delisi, SM, et al. Platelet cytosolic calcium responses to serotonin in depressed patients and controls: relationship to symptomatology and medication. Biol Psychiatry. 1998;43(5):327334.CrossRefGoogle ScholarPubMed
Shimbo, D, et al. Exaggerated serotonin-mediated platelet reactivity as a possible link in depression and acute coronary syndromes. Am J Cardiol. 2002;89(3):331333.CrossRefGoogle ScholarPubMed
Tomiyoshi, R, et al. Serotonin-induced platelet intracellular Ca2+ responses in untreated depressed patients and imipramine responders in remission. Biol Psychiatry. 1999;45(8):10421048.CrossRefGoogle ScholarPubMed
Yamawaki, S, et al. Enhanced calcium response to serotonin in platelets from patients with affective disorders. J Psychiatry Neurosci. 1996;21(5):321324.Google ScholarPubMed
Berk, M, Plein, H. Platelet supersensitivity to thrombin stimulation in depression: a possible mechanism for the association with cardiovascular mortality. Clin Neuropharmacol. 2000;23(4):182185.CrossRefGoogle ScholarPubMed
Lederbogen, F, et al. Increased platelet aggregability in major depression? Psychiatry Res. 2001;102(3):255261.CrossRefGoogle ScholarPubMed
Pandey, GN, et al. Hyperactive phosphoinositide signaling pathway in platelets of depressed patients: effect of desipramine treatment. Psychiatry Res. 2001;105(1–2):2332.CrossRefGoogle ScholarPubMed
Berk, M, Plein, H, Ferreira, D. Platelet glutamate receptor supersensitivity in major depressive disorder. Clin Neuropharmacol. 2001;24(3):129132.CrossRefGoogle ScholarPubMed
Bothwell, RA, Eccleston, D, Marshall, E. Platelet intracellular calcium in patients with recurrent affective disorders. Psychopharmacology (Berl). 1994;114(2):375381.CrossRefGoogle ScholarPubMed
Gomez-Gil, E, et al. Decrease of the platelet 5-HT2A receptor function by long-term imipramine treatment in endogenous depression. Hum Psychopharmacol. 2004;19(4):251258.CrossRefGoogle ScholarPubMed
Gomez-Gil, E, et al. Platelet 5-HT2A-receptor-mediated induction of aggregation is not altered in major depression. Hum Psychopharmacol. 2002;17(8):419424.CrossRefGoogle Scholar
Maes, M, et al. Blood coagulation and platelet aggregation in major depression. J Affect Disord. 1996;40(1–2):3540.CrossRefGoogle ScholarPubMed
Dubovsky, SL, et al. Increased platelet intracellular calcium concentration in patients with bipolar affective disorders. Arch Gen Psychiatry. 1989;46(7):632638.CrossRefGoogle ScholarPubMed
Palmar, M, Marcano, A, Castejon, O. Fine structural alterations of blood platelets in depression. Biol Psychiatry. 1997;42(10):965968.CrossRefGoogle ScholarPubMed
Ataoglu, A, Canan, F. Mean platelet volume in patients with major depression: effect of escitalopram treatment. J Clin Psychopharmacol. 2009;29(4):368371.CrossRefGoogle ScholarPubMed
Canan, F, et al. Association of mean platelet volume with DSM-IV major depression in a large community-based population: the MELEN study. J Psychiatr Res. 2012;46(3):298302.CrossRefGoogle Scholar
Kaneko, M, et al. 5HT2 receptor-mediated function in depressed patients: investigation by measuring 5HT-induced shape change of blood platelets. Jpn J Psychiatry Neurol. 1992;46(1):169174.Google ScholarPubMed
Embi, N, Rylatt, DB, Cohen, P. Glycogen synthase kinase-2 and phosphorylase kinase are the same enzyme. Eur J Biochem. 1979;100(2):339347.CrossRefGoogle ScholarPubMed
Grimes, CA, Jope, RS. The multifaceted roles of glycogen synthase kinase 3beta in cellular signaling. Prog Neurobiol. 2001;65(4):391426.CrossRefGoogle ScholarPubMed
Bradley, CA, et al. A pivotal role of GSK-3 in synaptic plasticity. Front Mol Neurosci. 2012;5:13 CrossRefGoogle ScholarPubMed
Peineau, S, et al. The role of GSK-3 in synaptic plasticity. Br J Pharmacol. 2008;153(Suppl 1 ):S428S437.CrossRefGoogle ScholarPubMed
Jope, RS, Roh, MS. Glycogen synthase kinase-3 (GSK3) in psychiatric diseases and therapeutic interventions. Curr Drug Targets. 2006;7(11):14211434.CrossRefGoogle ScholarPubMed
Prickaerts, J, et al. Transgenic mice overexpressing glycogen synthase kinase 3beta: a putative model of hyperactivity and mania. J Neurosci. 2006;26(35):90229029.CrossRefGoogle ScholarPubMed
Beaulieu, JM, et al. Role of GSK3 beta in behavioral abnormalities induced by serotonin deficiency. Proc Natl Acad Sci USA. 2008;105(4):13331338.CrossRefGoogle ScholarPubMed
Klein, PS, Melton, DA. A molecular mechanism for the effect of lithium on development. Proc Natl Acad Sci USA. 1996;93(16):84558459.CrossRefGoogle ScholarPubMed
Li, X, et al. Lithium regulates glycogen synthase kinase-3beta in human peripheral blood mononuclear cells: implication in the treatment of bipolar disorder. Biol Psychiatry. 2007;61(2):216222.CrossRefGoogle ScholarPubMed
Li, X, et al. Regulation of mouse brain glycogen synthase kinase-3 by atypical antipsychotics. Int J Neuropsychopharmacol. 2007;10(1):719.CrossRefGoogle ScholarPubMed
Li, X, et al. In vivo regulation of glycogen synthase kinase-3beta (GSK3beta) by serotonergic activity in mouse brain. Neuropsychopharmacology. 2004;29(8):14261431.CrossRefGoogle ScholarPubMed
Diniz, BS, et al. Platelet GSK3B activity in patients with late-life depression: marker of depressive episode severity and cognitive impairment? World J Biol Psychiatry. 2011;12(3):216222.CrossRefGoogle ScholarPubMed
Donovan, MJ, et al. Neurotrophin and neurotrophin receptors in vascular smooth muscle cells. Regulation of expression in response to injury. Am J Pathol. 1995;147(2):309324.Google ScholarPubMed
Nakahashi, T, et al. Vascular endothelial cells synthesize and secrete brain-derived neurotrophic factor. FEBS Lett. 2000;470(2):113117.CrossRefGoogle ScholarPubMed
Kerschensteiner, M, et al. Activated human T cells, B cells, and monocytes produce brain-derived neurotrophic factor in vitro and in inflammatory brain lesions: a neuroprotective role of inflammation? J Exp Med. 1999;189(5):865870.CrossRefGoogle Scholar
Carvalho, AL, et al. Role of the brain-derived neurotrophic factor at glutamatergic synapses. Br J Pharmacol. 2008;153(Suppl 1):S310S324.CrossRefGoogle ScholarPubMed
Guillin, O, et al. Brain-derived neurotrophic factor and the plasticity of the mesolimbic dopamine pathway. Int Rev Neurobiol. 2004;59:425444.CrossRefGoogle ScholarPubMed
Martinowich, K, Lu, B. Interaction between BDNF and serotonin: role in mood disorders. Neuropsychopharmacology. 2008;33(1):7383.CrossRefGoogle ScholarPubMed
Hennigan, A, et al. Deficits in LTP and recognition memory in the genetically hypertensive rat are associated with decreased expression of neurotrophic factors and their receptors in the dentate gyrus. Behav Brain Res. 2009;197(2):371377.CrossRefGoogle ScholarPubMed
Lu, Y, Christian, K, Lu, B. BDNF: a key regulator for protein synthesis-dependent LTP and long-term memory? Neurobiol Learn Mem. 2008;89(3):312323.CrossRefGoogle ScholarPubMed
Poo, MM. Neurotrophins as synaptic modulators. Nat Rev Neurosci. 2001;2(1):2432.CrossRefGoogle ScholarPubMed
Duman, RS, Monteggia, LM. A neurotrophic model for stress-related mood disorders. Biol Psychiatry. 2006;59(12):11161127.CrossRefGoogle ScholarPubMed
Dwivedi, Y, et al. Altered gene expression of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects. Arch Gen Psychiatry. 2003;60(8):804815.CrossRefGoogle ScholarPubMed
Karege, F, et al. Neurotrophin levels in postmortem brains of suicide victims and the effects of antemortem diagnosis and psychotropic drugs. Brain Res Mol Brain Res. 2005;136(1–2):2937.CrossRefGoogle ScholarPubMed
Molnar, M, et al. MRNA expression patterns and distribution of white matter neurons in dorsolateral prefrontal cortex of depressed patients differ from those in schizophrenia patients. Biol Psychiatry. 2003;53(1):3947.CrossRefGoogle ScholarPubMed
Monteggia, LM, et al. Brain-derived neurotrophic factor conditional knockouts show gender differences in depression-related behaviors. Biol Psychiatry. 2007;61(2):187197.CrossRefGoogle ScholarPubMed
Coppell, AL, Pei, Q, Zetterstrom, TS. Bi-phasic change in BDNF gene expression following antidepressant drug treatment. Neuropharmacology. 2003;44(7):903910.CrossRefGoogle ScholarPubMed
De Foubert, G, et al. Fluoxetine-induced change in rat brain expression of brain-derived neurotrophic factor varies depending on length of treatment. Neuroscience. 2004;128(3):597604.CrossRefGoogle ScholarPubMed
Malberg, JE, Duman, RS. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology. 2003;28(9):15621571.CrossRefGoogle ScholarPubMed
Santarelli, L, et al. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science. 2003;301(5634):805809.CrossRefGoogle ScholarPubMed
Fujimura, H, et al. Brain-derived neurotrophic factor is stored in human platelets and released by agonist stimulation. Thromb Haemost. 2002;87(4):728734.CrossRefGoogle ScholarPubMed
Radka, SF, et al. Presence of brain-derived neurotrophic factor in brain and human and rat but not mouse serum detected by a sensitive and specific immunoassay. Brain Res. 1996;709(1):122301.CrossRefGoogle Scholar
Yamamoto, H, Gurney, ME. Human platelets contain brain-derived neurotrophic factor. J Neurosci. 1990;10(11):34693478.CrossRefGoogle ScholarPubMed
Serra-Millas, M. Are the changes in the peripheral brain-derived neurotrophic factor levels due to platelet activation? World J Psychiatry. 2016;6(1):84101.CrossRefGoogle ScholarPubMed
Tamura, S, et al. Release reaction of brain-derived neurotrophic factor (BDNF) through PAR1 activation and its two distinct pools in human platelets. Thromb Res. 2011;128(5):e55e61.CrossRefGoogle ScholarPubMed
!!! INVALID CITATION !!! {Fujimura, 2002 #284}.Google Scholar
Klein, AB, et al. Blood BDNF concentrations reflect brain-tissue BDNF levels across species. Int J Neuropsychopharmacol. 2011;14(3):347353.CrossRefGoogle ScholarPubMed
Pan, W, et al. Transport of brain-derived neurotrophic factor across the blood-brain barrier. Neuropharmacology. 1998;37(12):15531561.CrossRefGoogle ScholarPubMed
Sartorius, A, et al. Correlations and discrepancies between serum and brain tissue levels of neurotrophins after electroconvulsive treatment in rats. Pharmacopsychiatry. 2009;42(6):270276.CrossRefGoogle ScholarPubMed
Karege, F, Schwald, M, Cisse, M. Postnatal developmental profile of brain-derived neurotrophic factor in rat brain and platelets. Neurosci Lett. 2002;328(3):261264.CrossRefGoogle ScholarPubMed
Sen, S, Duman, R, Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant medications: meta-analyses and implications. Biol Psychiatry. 2008;64(6):527532.CrossRefGoogle ScholarPubMed
Aydemir, O, Deveci, A, Taneli, F. The effect of chronic antidepressant treatment on serum brain-derived neurotrophic factor levels in depressed patients: a preliminary study. Prog Neuropsychopharmacol Biol Psychiatry. 2005;29(2):261265.CrossRefGoogle ScholarPubMed
Gervasoni, N, et al. Partial normalization of serum brain-derived neurotrophic factor in remitted patients after a major depressive episode. Neuropsychobiology. 2005;51(4):234238.CrossRefGoogle ScholarPubMed
Gonul, AS, et al. Effect of treatment on serum brain-derived neurotrophic factor levels in depressed patients. Eur Arch Psychiatry Clin Neurosci. 2005;255(6):381386.CrossRefGoogle ScholarPubMed
Lang, SB, et al. Endogenous brain-derived neurotrophic factor triggers fast calcium transients at synapses in developing dendrites. J Neurosci. 2007;27(5):10971105.CrossRefGoogle ScholarPubMed
Lang, UE, et al. Correlation between serum brain-derived neurotrophic factor level and an in vivo marker of cortical integrity. Biol Psychiatry. 2007;62(5):530535.CrossRefGoogle Scholar
Shimizu, E, et al. Alterations of serum levels of brain-derived neurotrophic factor (BDNF) in depressed patients with or without antidepressants. Biol Psychiatry. 2003;54(1):7075.CrossRefGoogle ScholarPubMed
Basterzi, AD, et al. Effects of fluoxetine and venlafaxine on serum brain derived neurotrophic factor levels in depressed patients. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(2):281285.CrossRefGoogle ScholarPubMed
Huang, TL, Lee, CT, Liu, YL. Serum brain-derived neurotrophic factor levels in patients with major depression: effects of antidepressants. J Psychiatr Res. 2008;42(7):521525.CrossRefGoogle ScholarPubMed
Chen, B, et al. Increased hippocampal BDNF immunoreactivity in subjects treated with antidepressant medication. Biol Psychiatry. 2001;50(4):260265.CrossRefGoogle ScholarPubMed
Duman, RS. Role of neurotrophic factors in the etiology and treatment of mood disorders. Neuromolecular Med. 2004;5(1):1125.CrossRefGoogle ScholarPubMed
Karege, F, et al. Low brain-derived neurotrophic factor (BDNF) levels in serum of depressed patients probably results from lowered platelet BDNF release unrelated to platelet reactivity. Biol Psychiatry. 2005;57(9):10681072.CrossRefGoogle ScholarPubMed
Caviedes, A, et al. BDNF/NF-kappaB signaling in the neurobiology of depression. Curr Pharm Des. 2017;23(21):31543163.CrossRefGoogle ScholarPubMed
Kojima, M, Matsui, K, Mizui, T. BDNF pro-peptide: physiological mechanisms and implications for depression. Cell Tissue Res. 2019;377(1):7379.CrossRefGoogle ScholarPubMed
Lee, BH, Kim, YK. Reduced platelet BDNF level in patients with major depression. Prog Neuropsychopharmacol Biol Psychiatry. 2009;33(5):849853.CrossRefGoogle ScholarPubMed
Lommatzsch, M, et al. The impact of age, weight and gender on BDNF levels in human platelets and plasma. Neurobiol Aging. 2005;26(1):115123.CrossRefGoogle ScholarPubMed
Karege, F, et al. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109(2):143148.CrossRefGoogle ScholarPubMed
Chrapko, WE, et al. Decreased platelet nitric oxide synthase activity and plasma nitric oxide metabolites in major depressive disorder. Biol Psychiatry. 2004;56(2):129134.CrossRefGoogle ScholarPubMed
Chrapko, W, et al. Alteration of decreased plasma NO metabolites and platelet NO synthase activity by paroxetine in depressed patients. Neuropsychopharmacology. 2006;31(6):12861293.CrossRefGoogle ScholarPubMed
Vieweg, WV, et al. Treatment of depression in patients with coronary heart disease. Am J Med. 2006;119(7):567573.CrossRefGoogle ScholarPubMed
Wang, JT, Hoffman, B, Blumenthal, JA. Management of depression in patients with coronary heart disease: association, mechanisms, and treatment implications for depressed cardiac patients. Expert Opin Pharmacother. 2011;12(1):8598.CrossRefGoogle ScholarPubMed
Kubera, M, et al. Effects of serotonin and serotonergic agonists and antagonists on the production of tumor necrosis factor alpha and interleukin-6. Psychiatry Res. 2005;134(3):251258.CrossRefGoogle ScholarPubMed