Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-18T19:40:11.994Z Has data issue: false hasContentIssue false

Could Stress Cause Psychosis in Individuals Vulnerable to Schizophrenia?

Published online by Cambridge University Press:  07 November 2014

Abstract

It has long been considered that psychosocial stress plays a role in the expression of symptoms in schizophrenia (SZ), as it interacts with latent neural vulnerability that stems from genetic liability and early environmental insult. Advances in the understanding of the neurobiology of the stress cascade in both animal and human studies lead to a plausible model by which this interaction may occur: through neurotoxic effects on the hippocampus that may involve synaptic remodeling. Of late, the neurodevelopmental model of SZ etiology has been favored. But an elaboration of this schema that credits the impact of postnatal events and considers a role for neurodegenerative changes may be more plausible, given the evidence for gene-environment interaction in SZ expression and progressive structural changes observed with magnetic resonance imaging. Furthermore, new insights into nongliotic neurotoxic effects such as apoptosis, failure of neurogenesis, and changes in circuitry lead to an expansion of the time frame in which environmental effects may mediate expression of SZ symptoms.

Type
Feature Article
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Goff, DC, Coyle, JT. The emerging role of glutamate in the pathophysiology and treatment of schizophrenia. Am J Psychiatry. 2001;58:13671377.CrossRefGoogle Scholar
2.Benes, FM, Berretta, S. GABA-ergic interneurons: implications for understanding schizophrenia and bipolar disorder. Neuropsychopharmacology. 2001;25:127.CrossRefGoogle Scholar
3.Carlsson, A, Waters, N, Holm-Waters, S, et al.Interactions between monoamines, glutamate, and GABA in schizophrenia: new evidence. Ann Rev Pharmacol Toxicol. 2001;41:237260.CrossRefGoogle ScholarPubMed
4.Braff, DL, Geyer, MA, Swerdlow, NR. Human studies of prepulse inhibition of startle: normal subjects, patient groups, and pharmacological studies. Psychopharmacology. 2001;156:234258.CrossRefGoogle ScholarPubMed
5.McGlashan, TH, Hoffman, RE. Schizophrenia as a disorder of developmentally reduced synaptic connectivity. Arch Gen Psychiatry. 2000;57:637648.CrossRefGoogle ScholarPubMed
6.Uno, H, Tarara, R, Else, JG, Suleman, MA, Sapolsky, RM. Hippocampal damage associated with prolonged and fatal stress in primates. J Neurosci. 1989;9:17051711.CrossRefGoogle ScholarPubMed
7. Stein-Behrens, BA, Lin, WJ, Sapolsky, RM. Physiological elevations of glucocorticoids potentiate glutamate accumulation in the hippocampus. J Neurochem. 1994;63:596602.CrossRefGoogle Scholar
8.Sapolsky, RM, Uno, H, Rebert, CS, Finch, CE. Hippocampal damage associated with prolonged glucocorticoid exposure in primates. J Neurosci. 1990;10:28972902.CrossRefGoogle ScholarPubMed
9.Woolley, CS, Gould, E, Frankfurt, M, McEwen, BS. Naturally occurring fluctuation in dendritic spine density on adult hippocampal pyramidal neurons. J Neurosci. 1990;10:40354039.CrossRefGoogle ScholarPubMed
10.McKittrick, CR, Blanchard, DC, Blanchard, RJ, McEwen, BS, Sakai, RR. Serotonin receptor binding in a colony model of chronic social stress. Biol Psychiatry. 1995;37:383393.CrossRefGoogle Scholar
11.Sousa, N, Lukoyanov, NV, Madeira, MD, Almeida, OF, Paula-Barbosa, MM. Reorganization of the morphology of hippocampal neurites and synapses after stress-induced damage correlates with behavioral improvement. Neuroscience. 2000;97:253266.CrossRefGoogle ScholarPubMed
12.Magarinos, AM, Deslandes, A, McEwen, BS. Effects of antidepressants and benzodiazepine treatments on the dendritic structure of CA3 pyramidal neurons after chronic stress. Eur J Pharmacol. 1999;371:113122.CrossRefGoogle ScholarPubMed
13.Moghaddam, B, Bolinao, ML, Stein-Behrens, B, Sapolsky, R. Glucocorticoids mediate the stress-induced extracellular accumulation of glutamate. Brain Res. 1994;655:251254.CrossRefGoogle ScholarPubMed
14.Lowy, MT, Gault, L, Yamamoto, BK. Adrenalectomy attenuates stress-induced elevations in extracellular glutamate concentrations in the hippocampus. J Neurochem. 1993;61:19571960.CrossRefGoogle ScholarPubMed
15.Lawrence, MS, Sapolsky, RM. Glucocorticoids accelerate ATP loss following metabolic insults in cultured hippocampal neurons. Brain Res. 1994;646:303306.CrossRefGoogle ScholarPubMed
16.Virgin, CE Jr, Ha, TP, Packan, DR, et al.Glucocorticoids inhibit glucose transport and glutamate uptake in hippocampal astrocytes: implications for glucocorticoid neurotoxicity. J Neurochem. 1991;57:14221428.CrossRefGoogle ScholarPubMed
17.Arbel, I, Kadar, T, Silbermann, M, Levy, A. The effects of long-term corticosterone administration on hippocampal morphology and cognitive performance of middle-aged rats. Brain Res. 1994;657:227235.CrossRefGoogle ScholarPubMed
18.Sass, KJ, Sass, A, Westerveld, M, et al.Specificity in the correlation of verbal memory and hippocampal neuron loss: dissociation of memory, language, and verbal intellectual ability. J Clin Exp Neuropsychol. 1992;14:662672.CrossRefGoogle ScholarPubMed
19.Sass, KJ, Westerveld, M, Buchanan, CP, et al.Degree of hippocampal neuron loss determines severity of verbal memory decrease after left anteromesiotemporal lobectomy. Epilepsia. 1994;35:11791186.CrossRefGoogle ScholarPubMed
20.McEwen, BS. Allostasis and allostatic load: implications for neuropsychopharmacology. Neuropsychopharmacology. 2000;22:108124.CrossRefGoogle ScholarPubMed
21.Corcoran, CM, Gallitano-Mendel, A, Leitman, D, Malaspina, D. The neurobiology of the stress cascade and its potential relevance for schizophrenia. J Psychiatr Pract. 2001;7:314.CrossRefGoogle ScholarPubMed
22.Starkman, MN, Gebarski, SS, Berent, S, Schteingart, DE. Hippocampal formation volume, memory dysfunction, and cortisol levels in patients with Cushing's syndrome. Biol Psychiatry. 1992;32:756765.CrossRefGoogle ScholarPubMed
23.Lupien, S, Lecours, AR, Lussier, I, et al.Basal cortisol levels and cognitive deficits in human aging. J Neurosci. 1994;14:28932903.CrossRefGoogle ScholarPubMed
24.Lupien, SJ, de Leon, M, de Santi, S, et al.Cortisol levels during human aging predict hippocampal atrophy and memory deficits. Nat Neurosci. 1998;1:6973.CrossRefGoogle ScholarPubMed
25.Golomb, J, Kluger, A, de Leon, MJ, et al.Hippocampal formation size in normal human aging: a correlate of delayed secondary memory performance. Learn Mem. 1994;1:4554.CrossRefGoogle ScholarPubMed
26.Bremner, JD, Scott, TM, Delaney, RC, et al.Deficits in short-term memory in post-traumatic stress disorder. Am J Psychiatry. 1993;150:10151019.Google Scholar
27.Bremner, JD, Randall, P, Scott, TM, et al.MRI-based measurement of hippocampal volume in patients with combat-related posttraumatic stress disorder. Am J Psychiatry. 1995;152:973981.Google ScholarPubMed
28.Bremner, JD, Randall, P, Vermetten, E, et al.Magnetic resonance imaging-based measurement of hippocampal volume in posttraumatic stress disorder related to childhood physical and sexual abuse—a preliminary report. Biol Psychiatry. 1997;41:2332.CrossRefGoogle ScholarPubMed
29.Axelson, DA, Doraiswamy, PM, McDonald, WM, et al.Hypercortisolemia and hippocampal changes in depression. Psychiatry Res. 1993;47:163173.CrossRefGoogle ScholarPubMed
30.Rubinow, DR, Post, RM, Savard, R, Gold, PW. Cortisol hypersecretion and cognitive impairment in depression. Arch Gen Psychiatry. 1984;41:279283.CrossRefGoogle ScholarPubMed
31.Shah, PJ, Ebmeier, KP, Glabus, MF, Goodwin, GM. Cortical grey matter reductions associated with treatment-resistant chronic unipolar depression: controlled magnetic resonance imaging study. Br J Psychiatry. 1998;172:527532.CrossRefGoogle ScholarPubMed
32.Sheline, YI, Sanghavi, M, Mintun, MA, Gado, MH. Depression duration but not age predicts hippocampal volume loss in medically healthy women with recurrent major depression. J Neurosci. 1999;19:50345043.CrossRefGoogle Scholar
33.Bremner, JD, Narayan, M, Anderson, ER, Staib, LH, Miller, HL, Charney, DS. Hippocampal volume reduction in major depression. Am J Psychiatry. 2000;157:115118.CrossRefGoogle ScholarPubMed
34.Chu, JW, Matthias, DF, Belanoff, J, et al.Successful long-term treatment of refractory Cushing's disease with high-dose mifepristone (RU 486). J Clin Endocrinol Metab. 2001;86:35683573.Google ScholarPubMed
35.van der Lely, AJ, Foeken, K, van der Mast, RC, Lamberts, SW. Rapid reversal of acute psychosis in the Cushing syndrome with the cortisol-receptor antagonist mifepristone (RU 486). Ann Intern Med. 1991;114:143144.CrossRefGoogle ScholarPubMed
36.Johnson, J. Schizophrenia and Cushing's syndrome cured by adrenalectomy. Psychol Med. 1975;5:165168.CrossRefGoogle ScholarPubMed
37.Hirsch, D, Orr, G, Kantarovich, V, et al.Cushing's syndrome presenting as a schizophrenia-like psychotic state. Isr J Psychiatry Relat Sci. 2000;37:4650.Google ScholarPubMed
38.Gerson, SN, Miclat, R. Cushing's disease presenting as atypical psychosis followed by sudden death. Can J Psychiatry. 1985;30:223224.CrossRefGoogle ScholarPubMed
39.Saad, MF, Adams, F, Mackay, B, et al.Occult Cushing's disease presenting with acute psychosis. Am J Med. 1984;76:759766.CrossRefGoogle ScholarPubMed
40.Lee, KM, Lin, YZ, Huang, FY. Steroid-induced acute psychosis in a child with asthma: report of one case. Acta Paediatr Taiwan. 2001;42:169171.Google Scholar
41.Buchman, AL. Side effects of corticosteroid therapy. J Clin Gastroenterol. 2001;33:289294.CrossRefGoogle ScholarPubMed
42.Patten, SB, Neutel, CI. Corticosteroid-induced adverse psychiatric effects: incidence, diagnosis and management. Drug Saf. 2000;22:111122.CrossRefGoogle ScholarPubMed
43.Brown, ES, Suppes, T. Forum. What are the mental health complications of steroid therapy? Harv Ment Health Lett. 2000;16:8.Google ScholarPubMed
44.David, D, Kutcher, GS, Jackson, El, Mellman, TA. Psychotic symptoms in combat-related posttraumatic stress disorder. J Clin Psychiatry. 1999;60:2932.CrossRefGoogle ScholarPubMed
45.Nelson, JC, Davis, JM. DST studies in psychotic depression: a meta-analysis. Am J Psychiatry. 1997;154:14971503.CrossRefGoogle ScholarPubMed
46.Schatzberg, AF, Rothschild, AJ, Stahl, JB, et al.The dexamethasone suppression test: identification of subtypes of depression. Am J Psychiatry. 1983;140:8891.Google ScholarPubMed
47.Duval, F, Mokrani, MC, Crocq, MA, et al.Dopaminergic function and the cortisol response to dexamethasone in psychotic depression. Prog Neuropsychopharmacol Biol Psychiatry. 2000;24:207225.CrossRefGoogle ScholarPubMed
48.Brown, GW, Birley, JL. Crises and life changes and the onset of schizophrenia. J Health Soc Behav. 1968;9:203214.CrossRefGoogle ScholarPubMed
49.Norman, RM, Malla, AK. Stressful life events and schizophrenia. I: a review of the research. Br J Psychiatry. 1993;162:161166.CrossRefGoogle Scholar
50.Malla, AK, Cortese, L, Shaw, TS, Ginsberg, B. Life events and relapse in schizophrenia: a one-year prospective study. Soc Psychiatry Psychiatr Epidemiol. 1990;25:221224.CrossRefGoogle ScholarPubMed
51.Ventura, J, Nuechterlein, KH, Lukoff, D, Hardesty, JP. A prospective study of stressful life events and schizophrenic relapse. J Abnorm Psychol. 1989;98:407411.CrossRefGoogle ScholarPubMed
52.Das, MK, Kulhara, PL, Verma, SK. Life events preceding relapse of schizophrenia. Int J Soc Psychiatry. 1997;43:5663.CrossRefGoogle ScholarPubMed
53.Hultman, CM, Wieselgren, IM, Ohman, A. Relationships between social support, social coping and life events in the relapse of schizophrenic patients. Scand J Psychol. 1997;38:313.CrossRefGoogle ScholarPubMed
54.Sachar, EJ. Evidence for neuroendocrine abnormalities in the major mental illnesses. Res Publ Assoc Res Nerv Ment Dis. 1975;54:347358.Google ScholarPubMed
55.Van Cauter, E, Linkowski, P, Kerkhofs, M, et al.Circadian and sleep-related endocrine rhythms in schizophrenia. Arch Gen Psychiatry. 1991;48:348356.CrossRefGoogle ScholarPubMed
56.Walder, DJ, Walker, EF, Lewine, RJ. Cognitive functioning, cortisol release, and symptom severity in patients with schizophrenia. Biol Psychiatry. 2000;48:11211132.CrossRefGoogle ScholarPubMed
57.Yeragani, VK. The incidence of abnormal dexamethasone suppression in schizophrenia: a review and a meta-analytic comparison with the incidence in normal controls. Can J Psychiatry. 1990;35:128132.CrossRefGoogle Scholar
58.Nelson, MD, Saykin, AJ, Flashman, LA. Riordan, HJ. Hippocampal volume reduction in schizophrenia as assessed by magnetic resonance imaging: a meta-analytic study. Arch Gen Psychiatry. 1998;55:433440.CrossRefGoogle ScholarPubMed
59.Gur, RE, Turetsky, BI, Cowell, PE, Finkelman, C, Maany, V, Grossman, RI, Arnold, SE, Bilker, WB, Cur, RC. Temporolimbic volume reductions in schizophrenia. Arch Gen Psychiatry. 2000;57:769775.CrossRefGoogle ScholarPubMed
60.Goldberg, TE, Torrey, EF, Berman, KF, Weinberger, DR. Relations between neuropsychological performance and brain morphological and physiological measures in monozygotic twins discordant for schizophrenia. Psychiatry Res. 1994;55:5161.CrossRefGoogle ScholarPubMed
61.Nestor, PG, Shenton, ME, McCarley, RW, et al.Neuropsychological correlates of MRI temporal lobe abnormalities in schizophrenia. Am J Psychiatry. 1993;150:18491855.Google ScholarPubMed
62.Poland, RE, Cloak, C, Lutchmansingh, PJ, et al.Brain N-acetyl aspartate concentrations measured by H MRS are reduced in adult male rats subjected to perinatal stress: preliminary observations and hypothetical implications for neurodevelopmental disorders. J Psychiatr Res. 1999;33:4151.CrossRefGoogle ScholarPubMed
63.Soares, JC, Innis, RB. Neurochemical brain imaging investigations of schizophrenia. Biol Psychiatry. 1999;46:600615.CrossRefGoogle ScholarPubMed
64.Silbersweig, DA, Stern, E, Frith, C, et al.A functional neuroanatomy of hallucinations in schizophrenia. Nature. 1995;378:176179.CrossRefGoogle ScholarPubMed
65.Harrison, PJ. The neuropathology of schizophrenia. A critical review of the data and their interpretation. Brain. 1999;122(Pt 4):593624.CrossRefGoogle ScholarPubMed
66.Cannon, TD, Bearden, CE, Hollister, JM, et al.Childhood cognitive functioning in schizophrenia patients and their unaffected siblings: a prospective cohort study. Schizophr Bull. 2000;26:379393.CrossRefGoogle ScholarPubMed
67.Suddath, RL, Christison, GW, Torrey, EF, Casanova, MF, Weinberger, DR. Anatomical abnormalities in the brains of monozygotic twins discordant for schizophrenia. N Engl J Med. 1990;322:789794.CrossRefGoogle ScholarPubMed
68.Baare, WF, van Oel, CJ, Hulshoff Pol, HE, et al.Volumes of brain structures in twins discordant for schizophrenia. Arch Gen Psychiatry. 2001;58:3340.CrossRefGoogle ScholarPubMed
69.Aleman, A, Hijman, R, de Haan, EH, Kahn, RS. Memory impairment in schizophrenia: a meta-analysis. Am J Psychiatry. 1999;156:13581366.CrossRefGoogle ScholarPubMed
70.Saykin, AJ, Gur, RC, Gur, RE, et al.Neuropsychological function in schizophrenia. Selective impairment in memory and learning. Arch Gen Psychiatry. 1991;48:618624.CrossRefGoogle ScholarPubMed
71.Onstad, S, Skre, I, Torgersen, S. Kringlen, E. Twin concordance for DSM-III-R schizophrenia. Acta Psychiatr Scand. 1991;83:395401.CrossRefGoogle ScholarPubMed
72.Malaspina, D, Goetz, RR, Friedman, JH, et al.Traumatic brain injury and schizophrenia in members of schizophrenia and bipolar disorder pedigrees. Am J Psychiatry. 2001;158:440446.CrossRefGoogle ScholarPubMed
73.Walker, EF, Cudeck, R, Mednick, SA, Schulsinger, F. Effects of parental absence and institutionalization on the development of clinical symptoms in high-risk children. Acta Psychiatr Scand. 1981;63:95109.CrossRefGoogle ScholarPubMed
74.Walker, E, Downey, G, Bergman, A. The effects of parental psychopathology and maltreatment on child behavior: a test of the diathesis-stress model. Child Dev. 1989;60:1524.CrossRefGoogle ScholarPubMed
75.Tienari, P. Interaction between genetic vulnerability and family environment: the Finnish adoptive family study of schizophrenia. Acta Psychiatr Scand. 1991;84:460465.CrossRefGoogle ScholarPubMed
76.Wahlberg, KE, Wynne, LC, Oja, H, et al.Gene-environment interaction in vulnerability to schizophrenia: findings from the Finnish Adoptive Family Study of Schizophrenia. Am J Psychiatry. 1997;154:355362.Google ScholarPubMed
77.Agid, O, Shapira, B, Zislin, J, et al.Environment and vulnerability to major psychiatric illness: a case control study of early parental loss in major depression, bipolar disorder and schizophrenia. Mol Psychiatry. 1999;4:163172.CrossRefGoogle ScholarPubMed
78.Corcoran, CM, Malaspina, D. Traumatic brain injury and schizophrenia risk. Int J Ment Health. 2001;30:1732.CrossRefGoogle Scholar
79.Corcoran, CM, Goetz, R, Amador, X, et al.Depression and higher IQ associated with premorbid TBI in schizophrenia. Biol Psychiatry. 2000;47(suppl):17S28S.CrossRefGoogle Scholar
80.Jacobsen, LK, Giedd, JN, Castellanos, FX, et al.Progressive reduction of temporal lobe structures in childhood-onset schizophrenia. Am J Psychiatry. 1998;155:678685.CrossRefGoogle ScholarPubMed
81.Puri, BK, Hutton, SB, Saeed, N, et al.A serial longitudinal quantitative MRI study of cerebral changes in first-episode schizophrenia using image segmentation and subvoxel registration. Psychiatry Res. 2001;106:141150.CrossRefGoogle ScholarPubMed
82.Nair, TR, Christensen, JD, Kingsbury, SJ, et al.Progression of cerebroventricular enlargement and the subtyping of schizophrenia. Psychiatry Res. 1997;74:141150.CrossRefGoogle ScholarPubMed
83.Lieberman, J, Chakos, M, Wu, H, et al.Longitudinal study of brain morphology in first-episode schizophrenia. Biol Psychiatry. 2001;49:487499.CrossRefGoogle ScholarPubMed
84.DeLisi, LE, Tew, W, Xie, S, et al.A prospective follow-up study of brain morphology and cognition in first-episode schizophrenic patients: preliminary findings. Biol Psychiatry. 1995;38:349360.CrossRefGoogle ScholarPubMed
85.Gur, RE, Cowell, P, Turetsky, BI, et al.A follow-up magnetic resonance imaging study of schizophrenia. Relationship of neuroanatomic changes to clinical and neurobehavioral measures. Arch Gen Psychiatry. 1998;55:145152.CrossRefGoogle ScholarPubMed
86.Mathalon, DH, Sullivan, EV, Lim, KO, Pfefferbaum, A. Progressive brain volume changes and the clinical course of schizophrenia in men: a longitudinal magnetic resonance imaging study. Arch Gen Psychiatry. 2001;58:148157.CrossRefGoogle Scholar
87.Copolov, D, Velakoulis, D, McGorry, P, et al.Neurobiological findings in early-phase schizophrenia. Brain Res Brain Res Rev. 2000;31:157165.CrossRefGoogle ScholarPubMed
88.Margolis, RL, Chuang, DM, Post, RM. Programmed cell death: implications for neuropsychiatric disorders. Biol Psychiatry. 1994;35:946956.CrossRefGoogle ScholarPubMed
89.Mattson, MP, Keller, JN, Begley, JG. Evidence for synaptic apoptosis. Exp Neural. 1998;153:3548.CrossRefGoogle ScholarPubMed
90.Feinberg, I. Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? J Psychiatr Res. 1982;17:319334.CrossRefGoogle ScholarPubMed
91.Keshavan, MS, Anderson, S, Pettegrew, JW. Is schizophrenia due to excessive synaptic pruning in the prefrontal cortex? The Feinberg hypothesis revisited. J Psychiatr Res. 1994;28:239265.CrossRefGoogle ScholarPubMed
92.Weinberger, DR. Cell biology of the hippocampal formation in schizophrenia. Biol Psychiatry. 1999;45:395402.CrossRefGoogle ScholarPubMed
93.Fuchs, E, Flugge, G. Modulation of binding sites for corticotropin-releasing hormone by chronic psychosocial stress. Psychoneuroendocrinology. 1995;20:3351.CrossRefGoogle ScholarPubMed
94.Mohn, AR, Gainetdinov, RR, Caron, MG, Koller, BH. Mice with reduced NMDA receptor expression display behaviors related to schizophrenia. Cell. 1999;98:427436.CrossRefGoogle ScholarPubMed
95.Le Grand, R, Mondloch, CJ, Maurer, D, Brent, HP. Neuroperception: early visual experience and face processing. Nature. 2001;410:890.CrossRefGoogle ScholarPubMed
96.Lieberman, JA. Is schizophrenia a neurodegenerative disorder? A clinical and neurobiological perspective. Biol Psychiatry. 1999;46:729739.CrossRefGoogle ScholarPubMed
97.Schatzberg, AF, Rothschild, AJ, Langlais, PJ, Bird, ED, Cole, JO. A corticosteroid/dopamine hypothesis for psychotic depression and related states. J Psychiatr Res. 1985;19:5764.CrossRefGoogle ScholarPubMed
98.Posener, JA, Schatzberg, AF, Williams, GH, et al.Hypothalamic-pituitary-adrenal axis effects on plasma homovanillic acid in man. Biol Psychiatry. 1999;45:222228.CrossRefGoogle ScholarPubMed
99.Walker, EF, Diforio, D. Schizophrenia: a neural diathesis-stress model. Psychol Rev. 1997;104:667685.CrossRefGoogle ScholarPubMed
100.Lipska, BK, Jaskiw, GE, Weinberger, DR. Postpubertal emergence of hyperresponsiveness to stress and to amphetamine after neonatal excitotoxic hippocampal damage: a potential animal model of schizophrenia. Neuropsychopharmacology. 1993;9:6775.CrossRefGoogle Scholar
101.Yui, K, Ishiguro, T, Goto, K, Ikemoto, S, Kamata, Y. Spontaneous recurrence of methampetamine psychosis: increased sensitivity to stress associated with noradrenergic hyperactivity and dopaminergic change. Eur Arch Psychiatry Clin Neurosci. 1999;249:103111.CrossRefGoogle ScholarPubMed
102.Benes, FM. Evidence for altered trisynaptic circuitry in schizophrenic hippocampus. Biol Psychiatry. 1999;46:589599.CrossRefGoogle ScholarPubMed
103.Deutsch, SI, Rosse, RB, Schwartz, BL, Mastropaolo, J. A revised excitotoxic hypothesis of schizophrenia: therapeutic implications. Clin Neuropharmacology. 2001;24:4349.CrossRefGoogle ScholarPubMed
104.Mednick, SA, Schulsinger, F. Some premorbid characteristics related to breakdown in children with schizophrenic mothers. In: Rosenthal, D, Kety, SS, eds. Transmission of Schizophrenia. New York, NY: Pergamon; 1968.Google Scholar
105.Huttunen, MO, Niskanen, P. Prenatal loss of father and psychiatric disorders. Arch Gen Psychiatry. 1978;35:429431.CrossRefGoogle ScholarPubMed
106.Schulsinger, F, Mednick, SA, Venables, PH, Raman, AC, Bell, B. Early detection and prevention of mental illness: the Mauritius project. A preliminary report. Neuropsychobiology. 1975;1:166179.CrossRefGoogle Scholar
107.Hazlett, EA, Dawson, ME, Filion, DL, Schell, AM, Nuechterlein, KH. Autonomic orienting and the allocation of processing resources in schizophrenia patients and putatively at-risk individuals. J Abnorm Psychol. 1997;106:171181.CrossRefGoogle ScholarPubMed
108.Hollister, JM, Mednick, SA, Brennan, P, Cannon, TD. Impaired autonomic nervous system-habituation in those at genetic risk for schizophrenia. Arch Gen Psychiatry. 1994;51:552558.CrossRefGoogle ScholarPubMed
109.Raine, A, Venables, PH, Dalais, C, et al.Early educational and health enrichment at age 3-5 years is associated with increased autonomic and central nervous system arousal and orienting at age 11 years: evidence from the Mauritius Child Health Project. Psychophysiology. 2001;38:254266.CrossRefGoogle ScholarPubMed