Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-10T19:29:58.087Z Has data issue: false hasContentIssue false

Brain-derived neurotrophic factor among patients with alcoholism

Published online by Cambridge University Press:  19 May 2020

Candelaria Martín-González*
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Lucía Romero-Acevedo
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Camino María Fernández-Rodríguez
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Lilian Medina-Vega
Affiliation:
Laboratorio Central, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Alen García-Rodríguez
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Paula Ortega-Toledo
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Lourdes González-Navarrete
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Víctor Eugenio Vera-Delgado
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
Emilio González-Reimers
Affiliation:
Servicio de Medicina Interna, Hospital Universitario de Canarias, Universidad de La Laguna, Tenerife, Canary Islands, Spain
*
*Candelaria Martín-González, Email: [email protected]

Abstract

Background

Brain-derived neurotrophic factor (BDNF) is involved in neurogenesis and in the protection against oxidative damage and neuronal apoptosis. After exercise, there is an increased expression of this myokine, especially in skeletal muscle and brain. Low BDNF levels have been described in neurodegenerative diseases. Alcoholics show both muscle atrophy and brain atrophy. Thus, this study was performed in order to analyze serum BDNF levels among alcoholics and their associations with brain atrophy and muscle strength.

Methods

Serum BDNF values were determined to 82 male alcoholics and 27 age-matched controls, and compared with handgrip strength, with the presence of brain atrophy, assessed by computed tomography, and with the intensity of alcoholism and liver function derangement.

Results

BDNF levels and handgrip strength were significantly lower among patients. Handgrip strength was correlated with BDNF values, both in the whole population and in alcoholics, especially in patients over 59 years of age. BDNF was poorly related to liver dysfunction but showed no relationship with brain atrophy or age.

Conclusion

Chronic alcoholics show decreased BDNF serum levels that are related to muscle function impairment rather than to age, brain atrophy, liver dysfunction, or the amount of ethanol consumed.

Type
Original Research
Copyright
© The Author(s), 2020. Published by Cambridge University Press

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allsop, J, Turner, B. Cerebellar degeneration associated with chronic alcoholism. J Neurol Sci. 1966;3(3):238258.CrossRefGoogle ScholarPubMed
Torvik, A, Torp, S. The prevalence of alcoholic cerebellar atrophy. A morphometric and histological study of an autopsy material. J Neurol Sci. 1986;75(1):4351.CrossRefGoogle ScholarPubMed
Yokota, O, Tsuchiya, K, Terada, S, et al. Frequency and clinicopathological characteristics of alcoholic cerebellar degeneration in Japan: a cross-sectional study of 1,509 postmortems. Acta Neuropathol. 2006;112(1):4351. doi:10.1007/s00401-006-0059-7.CrossRefGoogle ScholarPubMed
Fernandez-Rodriguez, C, Gonzalez-Reimers, E, Quintero-Platt, G, et al. Homocysteine, liver function derangement and brain atrophy in alcoholics. Alcohol. 2016;51(6):691697. doi:10.1093/alcalc/agw031.CrossRefGoogle ScholarPubMed
de la Monte, SM, Kril, JJ. Human alcohol-related neuropathology. Acta Neuropathol. 2014;127(1):7190. doi:10.1007/s00401-013-1233-3.CrossRefGoogle ScholarPubMed
Qin, L, Crews, FT. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration. J Neuroinflam. 2012;9:130. doi:10.1186/1742-2094-9-130.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Lim, KO, Desmond, JE, Sullivan, EV. Thinning of the corpus callosum in older alcoholic men: a magnetic resonance imaging study. Alcohol Clin Exp Res. 1996;20(4):752757.CrossRefGoogle ScholarPubMed
Estruch, R, Nicolas, JM, Salamero, M, et al. Atrophy of the corpus callosum in chronic alcoholism. J Neurol Sci. 1997;146(2):145151.CrossRefGoogle ScholarPubMed
Pfefferbaum, A, Rosenbloom, MJ, Chu, W, et al. White matter microstructural recovery with abstinence and decline with relapse in alcohol dependence interacts with normal ageing: a controlled longitudinal DTI study. Lancet Psychiatry. 2014;1(3):202212. doi:10.1016/S2215-0366(14)70301-3.CrossRefGoogle ScholarPubMed
Fein, G, Shimotsu, R, Barakos, J. Age-related gray matter shrinkage in a treatment naive actively drinking alcohol-dependent sample. Alcohol Clin Exp Res. 2010;34(1):175182. doi:10.1111/j.1530-0277.2009.01079.x.CrossRefGoogle Scholar
Martin, FC, Slavin, G, Levi, AJ. Alcoholic muscle disease. Br Med Bull. 1982;38(1):5356.CrossRefGoogle ScholarPubMed
Preedy, VR, Peters, TJ. Alcohol and skeletal muscle disease. Alcohol. 1990;25(2–3):177187.CrossRefGoogle ScholarPubMed
Cooper, C, Moon, HY, van Praag, H. On the run for hippocampal plasticity. Cold Spring Harb Perspect Med. 2018;8(4). doi:10.1101/cshperspect.a029736.CrossRefGoogle ScholarPubMed
van Praag, H, Christie, BR, Sejnowski, TJ, Gage, FH. Running enhances neurogenesis, learning, and long-term potentiation in mice. Proc Natl Acad Sci U S A. 1999;96(23):1342713431.CrossRefGoogle ScholarPubMed
van Praag, H, Shubert, T, Zhao, C, Gage, FH. Exercise enhances learning and hippocampal neurogenesis in aged mice. J Neurosci. 2005;25(38):86808685. doi:10.1523/JNEUROSCI.1731-05.2005.CrossRefGoogle ScholarPubMed
Guure, CB, Ibrahim, NA, Adam, MB, Said, SM. Impact of physical activity on cognitive decline, dementia, and its subtypes: meta-analysis of prospective studies. Biomed Res Int. 2017;2017:9016924. doi:10.1155/2017/9016924.CrossRefGoogle ScholarPubMed
Pedersen, BK, Pedersen, M, Krabbe, KS, Bruunsgaard, H, Matthews, VB, Febbraio, MA. Role of exercise-induced brain-derived neurotrophic factor production in the regulation of energy homeostasis in mammals. Exp Physiol. 2009;94(12):11531160. doi:10.1113/expphysiol.2009.048561.CrossRefGoogle ScholarPubMed
Pedersen, BK. Muscles and their myokines. J Exp Biol. 2011;214(Pt 2):337346. doi:10.1242/jeb.048074.CrossRefGoogle ScholarPubMed
Heyman, E, Gamelin, F-X, Goekint, M, et al. Intense exercise increases circulating endocannabinoid and BDNF levels in humans—possible implications for reward and depression. Psychoneuroendocrinology. 2012;37(6):844851. doi:10.1016/j.psyneuen.2011.09.017.CrossRefGoogle ScholarPubMed
Rasmussen, P, Brassard, P, Adser, H, et al. Evidence for a release of brain-derived neurotrophic factor from the brain during exercise. Exp Physiol. 2009;94(10):10621069. doi:10.1113/expphysiol.2009.048512.CrossRefGoogle ScholarPubMed
Matthews, VB, Astrom, M-B, Chan, MHS, et al. Brain-derived neurotrophic factor is produced by skeletal muscle cells in response to contraction and enhances fat oxidation via activation of AMP-activated protein kinase. Diabetologia. 2009;52(7):14091418. doi:10.1007/s00125-009-1364-1.CrossRefGoogle ScholarPubMed
Chen, S-D, Wu, C-L, Hwang, W-C, Yang, D-I. More insight into BDNF against neurodegeneration: anti-apoptosis, anti-oxidation, and suppression of autophagy. Int J Mol Sci. 2017;18(3). doi:10.3390/ijms18030545.Google ScholarPubMed
Laske, C, Stransky, E, Leyhe, T, et al. Stage-dependent BDNF serum concentrations in Alzheimer’s disease. J Neural Transm. 2006;113(9):12171224. doi:10.1007/s00702-005-0397-y.CrossRefGoogle ScholarPubMed
Zuccato, C, Cattaneo, E. Brain-derived neurotrophic factor in neurodegenerative diseases. Nat Rev Neurol. 2009;5(6):311322. doi:10.1038/nrneurol.2009.54.CrossRefGoogle ScholarPubMed
Erickson, KI, Prakash, RS, Voss, MW, et al. Brain-derived neurotrophic factor is associated with age-related decline in hippocampal volume. J Neurosci. 2010;30(15):53685375. doi:10.1523/JNEUROSCI.6251-09.2010.CrossRefGoogle ScholarPubMed
Logrip, ML, Barak, S, Warnault, V, Ron, D. Corticostriatal BDNF and alcohol addiction. Brain Res. 2015;1628(Pt A):6067. doi:10.1016/j.brainres.2015.03.025.CrossRefGoogle ScholarPubMed
Hensler, JG, Ladenheim, EE, Lyons, WE. Ethanol consumption and serotonin-1A (5-HT1A) receptor function in heterozygous BDNF (+/−) mice. J Neurochem. 2003;85(5):11391147.CrossRefGoogle ScholarPubMed
Jeanblanc, J, Logrip, ML, Janak, PH, Ron, D. BDNF-mediated regulation of ethanol consumption requires the activation of the MAP kinase pathway and protein synthesis. Eur J Neurosci. 2013;37(4):607612. doi:10.1111/ejn.12067.CrossRefGoogle ScholarPubMed
Ornell, F, Hansen, F, Schuch, FB, et al. Brain-derived neurotrophic factor in substance use disorders: a systematic review and meta-analysis. Drug Alcohol Depend. 2018;193:91103. doi:10.1016/j.drugalcdep.2018.08.036.CrossRefGoogle ScholarPubMed
Pedersen, BK. Physical activity and muscle-brain crosstalk. Nat Rev Endocrinol. 2019;15(7):383392. doi:10.1038/s41574-019-0174-x.CrossRefGoogle ScholarPubMed
Moon, HY, Becke, A, Berron, D, et al. Running-induced systemic cathepsin B secretion is associated with memory function. Cell Metab. 2016;24(2):332340. doi:10.1016/j.cmet.2016.05.025.CrossRefGoogle ScholarPubMed
Wrann, CD, White, JP, Salogiannnis, J, et al. Exercise induces hippocampal BDNF through a PGC-1alpha/FNDC5 pathway. Cell Metab. 2013;18(5):649659. doi:10.1016/j.cmet.2013.09.008.CrossRefGoogle ScholarPubMed
Joe, K-H, Kim, Y-K, Kim, T-S, et al. Decreased plasma brain-derived neurotrophic factor levels in patients with alcohol dependence. Alcohol Clin Exp Res. 2007;31(11):18331838. doi:10.1111/j.1530-0277.2007.00507.x.CrossRefGoogle ScholarPubMed
Umene-Nakano, W, Yoshimura, R, Ikenouchi-Sugita, A, et al. Serum levels of brain-derived neurotrophic factor in comorbidity of depression and alcohol dependence. Hum Psychopharmacol. 2009;24(5):409413. doi:10.1002/hup.1035.CrossRefGoogle ScholarPubMed
Huang, M-C, Chen, C-H, Chen, C-H, et al. Alterations of serum brain-derived neurotrophic factor levels in early alcohol withdrawal. Alcohol. 2008;43(3):241245. doi:10.1093/alcalc/agm172.CrossRefGoogle ScholarPubMed
Lee, BC, Choi, I-G, Kim, Y-K, et al. Relation between plasma brain-derived neurotrophic factor and nerve growth factor in the male patients with alcohol dependence. Alcohol. 2009;43(4):265269. doi:10.1016/j.alcohol.2009.04.003.Google ScholarPubMed
Romero-Acevedo, L, Gonzalez-Reimers, E, Martin-Gonzalez, MC, et al. Handgrip strength and lean mass are independently related to brain atrophy among alcoholics. Clin Nutr. 2018;38:1439. doi:10.1016/j.clnu.2018.06.965.CrossRefGoogle ScholarPubMed
Gallego, X, Cox, RJ, Funk, E, Foster, RA, Ehringer, MA. Voluntary exercise decreases ethanol preference and consumption in C57BL/6 adolescent mice: sex differences and hippocampal BDNF expression. Physiol Behav. 2015;138:2836. doi:10.1016/j.physbeh.2014.10.008.CrossRefGoogle ScholarPubMed
Lee, HW, Ahmad, M, Wang, H-W, Leenen, FHH. Effects of exercise training on brain-derived neurotrophic factor in skeletal muscle and heart of rats post myocardial infarction. Exp Physiol. 2017;102(3):314328. doi:10.1113/EP086049.CrossRefGoogle ScholarPubMed
Nigam, SM, Xu, S, Kritikou, JS, Marosi, K, Brodin, L, Mattson, MP. Exercise and BDNF reduce Abeta production by enhancing alpha-secretase processing of APP. J Neurochem. 2017;142(2):286296. doi:10.1111/jnc.14034.CrossRefGoogle ScholarPubMed
Karege, F, Perret, G, Bondolfi, G, Schwald, M, Bertschy, G, Aubry, J-M. Decreased serum brain-derived neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002;109(2):143148.CrossRefGoogle ScholarPubMed
Krabbe, KS, Nielsen, AR, Krogh-Madsen, R, et al. Brain-derived neurotrophic factor (BDNF) and type 2 diabetes. Diabetologia. 2007;50(2):431438. doi:10.1007/s00125-006-0537-4.CrossRefGoogle ScholarPubMed
Wens, I, Keytsman, C, Deckx, N, Cools, N, Dalgas, U, Eijnde, BO. Brain derived neurotrophic factor in multiple sclerosis: effect of 24 weeks endurance and resistance training. Eur J Neurol. 2016;23(6):10281035. doi:10.1111/ene.12976.CrossRefGoogle ScholarPubMed
Molteni, R, Wu, A, Vaynman, S, Ying, Z, Barnard, RJ, Gomez-Pinilla, F. Exercise reverses the harmful effects of consumption of a high-fat diet on synaptic and behavioral plasticity associated to the action of brain-derived neurotrophic factor. Neuroscience. 2004;123(2):429440.CrossRefGoogle Scholar
Garcia-Marchena, N, Silva-Pena, D, Martin-Velasco, AI, et al. Decreased plasma concentrations of BDNF and IGF-1 in abstinent patients with alcohol use disorders. PLoS One. 2017;12(11):e0187634. doi:10.1371/journal.pone.0187634.CrossRefGoogle ScholarPubMed