Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-23T14:29:05.015Z Has data issue: false hasContentIssue false

Selective Unilateral Autonomic Activation: Implications for Psychiatry

Published online by Cambridge University Press:  07 November 2014

Abstract

Research advances have led to three methods for selectively activating one half of the autonomic nervous system in humans.The first method is an ancient yogic technique called unilateral forced nostril breathing (UFNB) that employs forced breathing through only one nostril while closing off the other. The second method works by stimulation of an autonomic reflex point on the fifth intercostal space near the axilla. The most recent method employs unilateral vagus nerve stimulation (VNS) via the mid-inferior cervical branch and requires surgical implantation of a wire and pacemaker. UFNB is non-invasive and seems to selectively activate the ipsilateral branch of the sympathetic nervous system with a possible compensation effect leading to contralateral VNS. UFNB and VNS have been employed to treat psychiatric disorders. While UFNB has been studied for its potential effects on the endogenous ultradian rhythms of the autonomic and central nervous system, and their tightly coupled correlates, VNS has yet to be studied in this regard. This article reviews these three methods and discusses their similarities, putative mechanisms, their studied effects on the endogenous autonomic nervous system and central nervous system rhythms, and their implications for the treatment of psychiatric disorders.

Type
Review Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Saper, CB, Loewy, AD, Swanson, LW, et al.Direct hypothalamo-autonomic connections. Brain Res. 1976;117:305312.CrossRefGoogle ScholarPubMed
2.Saper, CB. Organization of cerebral cortical afferent systems in the rat. II. Hypothalamocortical projections. J Comp Neurol. 1985;237:2146.CrossRefGoogle ScholarPubMed
3.Saper, CB. Hypothalamic connections with the cerebral cortex. Prog Brain Res. 2000;126:3948.CrossRefGoogle ScholarPubMed
4.Karplus, J, Kreidl, A. Gehirn und sympathicus. I. Zwischenhirnbasis und halssympatheticus [German]. Pfluger Arch Gesamte Physiol. 1909;129:138144.CrossRefGoogle Scholar
5.Karplus, J, Kreidl, A. Gehirn und Sympathicus. II. Ein sympathicuszentrum im zwischenhirn [German]. Pfluger Arch Gesamte Physiol. 1910;135:401416.CrossRefGoogle Scholar
6.Karplus, J, Kreidl, A. Gehirn und sympathicus. III. Sympathicusleitung im gehirn und halsmark [German]. Pfluger Arch Gesamte Physiol. 1912;143:107127.Google Scholar
7.Karplus, J, Kreidl, A. Uber Totallexstirpationen einer und beider Grosshirnhemispharen an Affen (Macacus rhesus) [German]. Arch Anat Phsyiol (Physiol Abt). 1914:155212.Google Scholar
8.Swanson, LW. The hypothalamus. In: Bjorkland, A., Hokfelt, T., Swanson, L, eds. Handbook of Chemical Neuroanatomy, Vol. 5, Integrated Systems of the CNS. Amsterdam, The Netherlands: Elsevier Science Publishers BV; 1987:1124.Google Scholar
9.Beattie, J. Hypothalamic mechanisms. Can Med Assoc J. 1932;26:400405.Google ScholarPubMed
10.Beattie, J, Sheehan, D. The effects of hypothalamic stimulation on gastric motility. J Physiol. 1934;81:218227.CrossRefGoogle ScholarPubMed
11.Beattie, J, Kerr, A. The effects of diencephalic stimulation on urinary bladder tonus. Brain. 1936;59:302314.CrossRefGoogle Scholar
12.Ranson, S, Magoun, H. The hypothalamus. Ergeb Physiol. 1939;41:56163.CrossRefGoogle Scholar
13.Hess, WR. Diencephalon, Autonomic and Extrapyridimal Functions. New York, NY: Grune and Stratton; 1954.Google Scholar
14.Shannahoff-Khalsa, D. Lateralized rhythms of the central and autonomic nervous systems. Int J Psychophysiol. 1991;11:225251.CrossRefGoogle ScholarPubMed
15.Shannahoff-Khalsa, DS. Stress Technology Medicine, A New Paradigm for Stress and Considerations for Self-regulation. New York, NY: Marcel Dekker Inc.; 1991.Google Scholar
16.Shannahoff-Khalsa, DS. Psychophysiological States: The Ultradian Dynamics of Mind-Body Interactions. In: Bradley, RJ, Harris, RA, Jenner, P, eds. International Review of Neurobiology. vol 80. San Diego, Calif: Academic Press/Elsevier Scientific Publications; In press.Google Scholar
17.Kayser, R. Die exacta messung der luftdurchgangigkeit der nase [German]. Archives of Laryngology and Rhinology. 1895;3:101120.Google Scholar
18.Beickert, P. Halbseitenrhythmus der vegetativen innervation [German]. Arch Ohr Nos Kehl Hdk. 1951;157:404411.CrossRefGoogle Scholar
19.Werntz, DA, Bickford, RG, Bloom, FE, Shannahoff-Khalsa, DS. Alternating cerebral hemispheric activity and the lateralization of autonomic nervous function. Hum Neurobiol. 1983;2:3943.Google ScholarPubMed
20.Shannahoff-Khalsa, D. The ultradian rhythm of alternating cerebral hemispheric activity. Int J Neurosci. 1993;70:285298.CrossRefGoogle ScholarPubMed
21.Kayser, R. Uber den Weg der Athmungsluft durch die Nase [German]. Z Ohrerlheilh. 1889;20:96106.Google Scholar
22.Eccles, R. Nasal airflow in health and disease. Acta Otolaryngol. 2000;120:580595.CrossRefGoogle ScholarPubMed
23.Hasegawa, M, Kern, EB. Variations resistance in man: a rhinomanometric study of cycle in 50 human subjects. Rhinology. 1978;16:2029.Google Scholar
24.Heetderks, DR. Observations on the reaction of the nasal mucous membranes. Am J Med Sci. 1927;174:231244.CrossRefGoogle Scholar
25.Stoksted, P. Rhinometric measurements for determination of the nasal cycle. Acta Otolaryngol Suppl. 1953;109:159175.CrossRefGoogle ScholarPubMed
26.Shannahoff-Khalsa, DS, Kennedy, B, Yates, FE, et al.Ultradian rhythms of autonomic, cardiovascular, and neuroendocrine systems are related in humans. Am J Physiol. 1996;270:R873R887.Google ScholarPubMed
27.Shannahoff-Khalsa, DS, Kennedy, B, Yates, FE, et al.Low-frequency ultradian insulin rhythms are coupled to cardiovascular, autonomic, and neuroendocrine rhythms. Am J Physiol. 1997;272:R962R968.Google ScholarPubMed
28.Shannahoff-Khalsa, DS, Yates, FE. Ultradian sleep rhythms of lateral EEG, autonomic, and cardiovascular activity are coupled in humans. Int J Neurosci. 2000;101:2143.CrossRefGoogle ScholarPubMed
29.Shannahoff-Khalsa, DS, Gillin, JC, Yates, FE, et al.Ultradian rhythms of alternating cerebral hemispheric EEG dominance are coupled to rapid eye movement and non-rapid eye movement stage 4 sleep in humans. Sleep Med. 2001;2:333346.CrossRefGoogle ScholarPubMed
30.Kennedy, B, Ziegler, MG, Shannahoff-Khalsa, DS. Alternating lateralization of plasma catecholamines and nasal patency in humans. Life Sci. 1986;38:12031214.CrossRefGoogle ScholarPubMed
31.Kleitman, N. The Nature of Dreaming. London, England: Churchill Press; 1961.CrossRefGoogle Scholar
32.Kleitman, N. Phylogenetic, Ontogenetic and Environmental Determinants in the Evolution of Sleep-Wakefulness Cycles. Baltimore, Md: The Williams and Wilkins Co.; 1967.Google ScholarPubMed
33.Kleitman, N. Basic rest-activity cycle–22 years later. Sleep. 1982;5:311317.CrossRefGoogle ScholarPubMed
34.Lavie, P, Kripke, DF. Ultradian circa 11/2 hour rhythms: a multioscillatory system. Life Sci. 1981;29:24452450.CrossRefGoogle ScholarPubMed
35.Foley, J, DuBois, F. Quantitative studies of the vagus nerve in the cat. I. The ration of sensory and motor studies. J Comp Neurol. 1937;67:4967.CrossRefGoogle Scholar
36.Henry, TR. Therapeutic mechanisms of vagus nerve stimulation. Neurology. 2002;59(suppl 4):S3S14.CrossRefGoogle ScholarPubMed
37.Levy, M, Martin, P. Neural Control of the Heart. Bethesda, Md: American Physiological Society; 1979.Google Scholar
38.Levy, MN, Ng, ML, Zieske, H. Functional distribution of the peripheral cardiac sympathetic pathways. Circ Res. 1966;19:650661.CrossRefGoogle ScholarPubMed
39.Furnival, CM, Linden, RJ, Snow, HM. Chronotropic and inotropic effects on the dog heart of stimulating the efferent cardiac sympathetic nerves. J Physiol. 1973;230:137153.CrossRefGoogle ScholarPubMed
40.Hondeghem, LM, Mouton, E, Stassen, T, et al.Additive effects of acetylcholine released by vagal nerve stimulation on atrial rate. J Appl Physiol. 1975;38:108113.CrossRefGoogle ScholarPubMed
41.Hamlin, RL, Smith, CR. Effects of vagal stimulation on S-A and A-V nodes. Am J Physiol. 1968;215:560568.CrossRefGoogle Scholar
42.Shannahoff-Khalsa, D. Unilateral forced nostril breathing: basic science, clinical trials, and selected advanced techniques. Subtle Energies Energy Med J. 2001;12:79106.Google Scholar
43.Shannahoff-Khalsa, D. Kundalini Yoga Meditation: Techniques Specific for Psychiatric Disorders, Couples Therapy, and Personal Growth. New York, NY: W. W. Norton & Company; 2006.Google Scholar
44.Werntz, DA, Bickford, RG, Bloom, FE, et al. Cerebral Hemispheric Activity and Autonomic Nervous Function. Paper presented at: 10th Annual Meeting of the Society for Neuroscience. November 9-14, 1980; Cincinnati, Oh.Google Scholar
45.Werntz, DA, Bickford, RG, Bloom, FE, et al. Selective cortical activation by altering autonomic function. Abstract presented at: Annual Meeting of the Western EEG Society Meeting. February 21, 1981; Reno, Nev.Google Scholar
46.Werntz, DA, Bickford, RG, Shannahoff-Khalsa, D. Selective hemispheric stimulation by unilateral forced nostril breathing. Hum Neurobiol. 1987;6:165171.Google ScholarPubMed
47.Servit, Z, Kristof, M, Strejckova, A. Activating effect of nasal and oral hyperventilation on epileptic electrographic phenomena: reflex mechanisms of nasal origin. Epilepsia. 1981;22:321329.CrossRefGoogle ScholarPubMed
48.Klein, R, Pilon, D, Prosser, S, et al.Nasal airflow asymmetries and human performance. Biol Psychol. 1986;23:127137.CrossRefGoogle ScholarPubMed
49.Shannahoff-Khalsa, DS, Boyle, MR, Buebel, ME. The effects of unilateral forced nostril breathing on cognition. Int J Neurosci. 1991;57:239249.CrossRefGoogle ScholarPubMed
50.Jella, SA, Shannahoff-Khalsa, DS. The effects of unilateral forced nostril breathing on cognitive performance. Int J Neurosci. 1993;73:6168.CrossRefGoogle ScholarPubMed
51.Telles, S, Raghuraj, P, Maharana, S, et al.Immediate effect of three yoga breathing techniques on performance on a letter-cancellation task. Percept Mot Skills. 2007;104:12891296.CrossRefGoogle ScholarPubMed
52.Baglio, S, Bucolo, M, Fortuna, L, et al. MEG signals spatial power distribution and gamma band activity in yoga breathing exercises. Paper presented at: Conference Proceedings of the IEEE Engineering in Medicine and Biology Society. October 23-26, 2002; Houston, Tex.Google Scholar
53.Block, RA, Arnott, DP, Quigley, B, et al.Unilateral nostril breathing influences lateralized cognitive performance. Brain Cogn. 1989;9:181190.CrossRefGoogle ScholarPubMed
54.Sanders, B, Lattimore, C, Smith, K, et al.Forced single-nostril breathing and cognition. Percept Mot Skills. 1994;79:14991506.CrossRefGoogle ScholarPubMed
55.Schiff, BB, Rump, SA. Asymmetrical hemispheric activation and emotion: the effects of unilateral forced nostril breathing. Brain Cogn. 1995;29:217231.CrossRefGoogle ScholarPubMed
56.Shannahoff-Khalsa, DS, Beckett, LR. Clinical case report: efficacy of yogic techniques in the treatment of obsessive compulsive disorders. Int J Neurosci. 1996;85:117.CrossRefGoogle ScholarPubMed
57.Shannahoff-Khalsa, D, Ray, L, Levine, S, et al.Randomized controlled trial of yogic meditation techniques for patients with obsessive compulsive disorders. CNS Spectr. 1999;4:3446.CrossRefGoogle Scholar
58.Sercer, A. Research on the homolateral reflex of the nasal cavity on the lung. Acta Otolaryng. 1930;14:8290.Google Scholar
59.Samzelius-Lejdstrom, I. Researches with the bilateral troncopneumograph on the movements of the respiratory mechanisms during breathing. Acta Otolaryng. 1939;35(suppl):3104.Google Scholar
60.Stoksted, P. Obstructions in the nose and their influence on the pulmonary functions. Acta Otorhinolar. 1960;158(suppl):110.CrossRefGoogle Scholar
61.Drettner, B. Pathophysiological relationship between the upper and lower airways. Ann Otol Rhinol Laryngol. 1970;79:499505.CrossRefGoogle ScholarPubMed
62.Wotzilka, G, Schramek, J. Tierexperimentelle Untersuchungen uber den Weg des Inspirationsstromes jeder Nasenseite in die Lunge [German]. Mschr Ohrenheilk. 1930;64:580585.Google Scholar
63.Backon, J. Changes in blood glucose levels induced by differential forced unilateral nostril breathing, a technique which affects both brain hemisphericity and autonomic activity. Med Science Res. 1988;16:11971199.Google Scholar
64.Backon, J, Kullok, S. Effect of forced unilateral nostril breathing on blink rates: relevance to hemispheric lateralization of dopamine. Int J Neurosci. 1989;46:5359.CrossRefGoogle ScholarPubMed
65.Backon, J, Matamoros, N, Ticho, U. Changes in intraocular pressure induced by differential forced unilateral nostril breathing, a technique that affects both brain hemisphericity and autonomic activity. A pilot study. Graefes Arch Clin Exp Ophthalmol. 1989;227:575577.CrossRefGoogle ScholarPubMed
66.Mohan, SM, Reddy, SC, Wei, LY. Modulation of intraocular pressure by unilateral and forced unilateral nostril breathing in young healthy human subjects. Int Ophthalmol. 2001;24:305311.CrossRefGoogle ScholarPubMed
67.Chen, JC, Brown, B, Schmid, KL. Effect of unilateral forced nostril breathing on tonic accommodation and intraocular pressure. Clin Auton Res. 2004;14:396400.CrossRefGoogle ScholarPubMed
68.Benton, LA, Yates, FE. Ultradian adrenocortical and circulatory oscillations in conscious dogs. Am J Physiol. 1990;258:R578R590.Google ScholarPubMed
69.Orr, WC, Hoffman, HJ. A 90-min cardiac biorhythm: methodology and data analysis using modified periodograms and complex demodulation. IEEE Trans Biomed Eng. 1974;21:130143.CrossRefGoogle ScholarPubMed
70.Shannahoff-Khalsa, DS, Kennedy, B. The effects of unilateral forced nostril breathing on the heart. Int J Neurosci. 1993;73:4760.CrossRefGoogle ScholarPubMed
71.Mohan, S, Wei, L. Modulation of pulse rate by unilateral nostril breathing. J Indian Psychol. 2002;20:3237.Google Scholar
72.Dane, S, Caliskan, E, Karasen, M, et al.Effects of unilateral nostril breathing on blood pressure and heart rate in right-handed healthy subjects. Int J Neurosci. 2002;112:97102.CrossRefGoogle ScholarPubMed
73.Telles, S, Nagarathna, R, Nagendra, HR. Breathing through a particular nostril can alter metabolism and autonomic activities. Indian J Physiol Pharmacol. 1994;38:133137.Google ScholarPubMed
74.Telles, S, Nagarathna, R, Nagendra, HR. Physiological measures of right nostril breathing. J Altern Complement Med. 1996;2:479484.CrossRefGoogle ScholarPubMed
75.Friedell, A. Automatic attentive breathing in angina pectoris. Minn Med. 1948;31:875881.Google ScholarPubMed
76.Konno, A. Air flow and resistance in the nasal cavity. 2. Bilateral rhinometry using a pneumotachometer. Its principles and clinical application [Japanese]. Nippon Jibiinkoka Gakkai Kaiho. 1969;72:4965.Google ScholarPubMed
77.Takagi, K, Kobayasi, S. Skin pressure-vegetative reflex. Acta Med et Biol. 1955;4:3157.Google Scholar
78.Takagi, K, Sakurai, T. A sweat reflex due to pressure on the body surface [Japanese]. Jap J Physiol. 1950;1:2228.CrossRefGoogle Scholar
79.Rao, S, Potdar, A. Nasal airflow with body in various positions. J Appl Physiol. 1970;28:162165.CrossRefGoogle ScholarPubMed
80.Haight, JJ, Cole, P. Reciprocating nasal airflow resistances. Acta Otolaryngol. 1984;97:9398.CrossRefGoogle ScholarPubMed
81.Haight, JS, Cole, P. Unilateral nasal resistance and asymmetrical body pressure. J Otolaryngol Suppl. 1986;16:131.Google ScholarPubMed
82.Cole, P, Haight, J. Posture and the nasal cycle. Am Otol Rhinol Laryngol. 1986;95:233237.CrossRefGoogle ScholarPubMed
83.Cole, P, Haight, JS. Posture and nasal patency. Am Rev Respir Dis. 1984;129:351354.Google ScholarPubMed
84.Morris, GL, Mueller, WM. Long-term treatment with vagus nerve stimulation in patients with refractory epilepsy. The Vagus Nerve Stimulation Study Group E01-E05. Neurology. 1999;53:17311735.CrossRefGoogle Scholar
85.Ben-Menachem, E, Hamberger, A, Hedner, T, et al.Effects of vagus nerve stimulation on amino acids and other metabolites in the CSF of patients with partial seizures. Epilepsy Res. 1995;20:221227.CrossRefGoogle ScholarPubMed
86.Handforth, A, DeGiorgio, CM, Schachter, SC, et al.Vagus nerve stimulation therapy for partial-onset seizures: a randomized active-control trial. Neurology. 1998;51:4855.CrossRefGoogle ScholarPubMed
87.Hatton, KW, McLarney, JT, Pittman, T, et al.Vagal nerve stimulation: overview and implications for anesthesiologists. Anesth Analg. 2006;103:12411249.CrossRefGoogle ScholarPubMed
88.Salinsky, MC, Uthman, BM, Ristanovic, RK, et al.Vagus nerve stimulation for the treatment of medically intractable seizures. Results of a 1-year open-extension trial. Vagus Nerve Stimulation Study Group. Arch Neurol. 1996;53:11761180.CrossRefGoogle ScholarPubMed
89.DeGiorgio, CM, Schachter, SC, Handforth, A, et al.Prospective long-term study of vagus nerve stimulation for the treatment of refractory seizures. Epilepsia. 2000;41:11951200.CrossRefGoogle ScholarPubMed
90.Physician's Manual. VNS Therapy™ Pulse Model 102 Generator and VNS Therapy™ Pulse Duo Model 102R Generator. Houston, Tex: Cyberonics Inc: 2004.Google Scholar
91.Rush, AJ, George, MS, Sackeim, HA, et al.Vagus nerve stimulation (VNS) for treatment-resistant depressions: a multicenter study. Biol Psychiatry. 2000;47:276286.CrossRefGoogle ScholarPubMed
92.Sackeim, HA, Rush, AJ, George, MS, et al.Vagus nerve stimulation (VNS) for treatment-resistant depression: efficacy, side effects, and predictors of outcome. Neuropsychopharmacology. 2001;25:713728.CrossRefGoogle ScholarPubMed
93.Rush, AJ, Sackeim, HA, Marangell, LB, et al.Effects of 12 months of vagus nerve stimulation in treatment-resistant depression: a naturalistic study. Biol Psychiatry. 2005;58:355363.CrossRefGoogle ScholarPubMed
94.Rush, AJ, Marangell, LB, Sackeim, HA, et al.Vagus nerve stimulation for treatment-resistant depression: a randomized, controlled acute phase trial. Biol Psychiatry. 2005;58:347354.CrossRefGoogle ScholarPubMed
95.Nahas, Z, Marangell, LB, Husain, MM, et al.Two-year outcome of vagus nerve stimulation (VNS) for treatment of major depressive episodes. J Clin Psychiatry. 2005;66:10971104.CrossRefGoogle ScholarPubMed
96.Sackeim, HA, Rush, AJ, Marangell, LB, et al. Long-term antidepressant effects of vagus nerve stimulation (VNS) in treatment-resistant depression. Paper presented at: Annual Meeting of the American College of Neuropsychopharmacology. December 12–16, 2004; San Juan, PR.Google Scholar
97.Marangell, LB, Rush, AJ, George, MS, et al.Vagus nerve stimulation (VNS) for major depressive episodes: one year outcomes. Biol Psychiatry. 2002;51:280287.CrossRefGoogle ScholarPubMed
98.George, MS, Rush, AJ, Sackeim, HA, et al.Vagus nerve stimulation (VNS): utility in neuropsychiatric disorders. Int J Neuropsychopharmacol. 2003;6:7383.CrossRefGoogle ScholarPubMed
99.Husted, D, Shapira, N. A review of the treatment for refractory obsessive-compulsive disorder: from medicine to deep brain stimulation. CNS Spectr. 2004;9:833847.CrossRefGoogle ScholarPubMed
100.Pallanti, S, Hollander, E, Goodman, WK. A qualitative analysis of nonresponse: management of treatment-refractory obsessive-compulsive disorder. J Clin Psychiatry. 2004;65(suppl 14):610.Google ScholarPubMed
101.Nemeroff, CB, Mayberg, HS, Krahl, SE, et al.VNS therapy in treatment-resistant depression: clinical evidence and putative neurobiological mechanisms. Neuropsychopharmacology. 2006;31:13451355.CrossRefGoogle ScholarPubMed
102.Group VNSS. A randomized controlled trial of chronic vagus nerve stimulation for treatment of medically intractable seizures. Neurology. 1999;45:224230.Google Scholar
103.George, MS, Sackeim, HA, Marangell, LB, et al.Vagus nerve stimulation. A potential therapy for resistant depression? Psychiatr Clin North Am. 2000;23:757783.CrossRefGoogle ScholarPubMed
104.Groves, DA, Brown, VJ. Vagal nerve stimulation: a review of its applications and potential mechanisms that mediate its clinical effects. Neurosci Biobehav Rev. 2005;29:493500.CrossRefGoogle ScholarPubMed
105.Rosenbaum, JF, Heninger, G. Vagus nerve stimulation for treatment-resistant depression. Biol Psychiatry. 2000;47:273275.CrossRefGoogle ScholarPubMed
106.Dane, S, Balci, N. Handedness, eyedness and nasal cycle in children with autism. Int J Dev Neurosci. 2007;25:223226.CrossRefGoogle ScholarPubMed