Hostname: page-component-78c5997874-fbnjt Total loading time: 0 Render date: 2024-11-19T22:04:53.108Z Has data issue: false hasContentIssue false

Quantitative DT-MRI Investigations of the Human Cingulum Bundle

Published online by Cambridge University Press:  07 November 2014

Abstract

White matter fiber pathways are key structural components of the brain and its functional organization. The limbic system carries a great deal of its anatomic connectivity via the cingulum bundle. By allowing the in vivo delineation of the stem of the major fiber pathway systems, diffusion tensor magnetic resonance imaging has opened a new window into the detailed structure of the white matter in health and disease. Topographic, biophysical, and volumetric information about fiber tracts will provide a more complete understanding of the brain. By appreciating its interconnections, the precise anatomical knowledge of the cingulum bundle will improve our understanding of the limbic system and may enable improvements in the assessment and treatment of neuropsychiatric disorders. In this study, the stem of the cingulum bundle was investigated and defined in terms of its trajectory, anisotropy, and volume, in four normal human subjects, using diffusion tensor imaging.

Type
Original Research
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Dejerine, J. Anatomie Des Centres Nerveux. Paris, France: Rueff et Cie; 1895.Google Scholar
2.Papez, JW. Comparative Neurology. New York, NY: Hafner Publishing Co.; 1929.Google Scholar
3.Papez, JW. A proposed mechanism of emotion. Archives of Neurology and Psychiatry. 1937;38:6671352.CrossRefGoogle Scholar
4.Yakovlev, PI, Locke, S. Limbic nuclei of thalamus and connections of limbic cortex: III. Corticostriatal connections of the anterior cingulate gyrus, the cingulum, and the subcallosal bundle. Arch Neurol. 1960;5:3470.Google Scholar
5.Locke, S, Angevine, JB, Yakovlev, PI. Limbic nuclei of the thalamus and connections of limbic cortex. Arch Neurol. 1961;4:1524.CrossRefGoogle ScholarPubMed
6.Mufson, E, Pandya, DN. Some observations on the course and composition of the cingulum bundle in the rhesus monkey. J Comp Neurol. 1984;225:3143.CrossRefGoogle ScholarPubMed
7.Jones, EG, Powell, TPS. An anatomical study of converging sensory pathways within the cerebral cortex of the monkey. Brain. 1970;93:793820.CrossRefGoogle ScholarPubMed
8.Pandya, DN, Kuypers, HGJM. Cortico-cortical connections in the rhesus monkey. Brain Res. 1969;13:1336.CrossRefGoogle ScholarPubMed
9.Makris, N, Meyer, J, Bates, J, et al.MRI-based topographic parcellation of human cerebral white matter and nuclei: II. Rationale and applications with systematics of cerebral connectivity. Neuroimage. 1999;9:1745.CrossRefGoogle Scholar
10.Makris, N, Papadimitriou, GM, Worth, AJ, et al.Diffusion tensor imaging. In: Davis, KL, Charney, D, Coyle, J, Nemeroff, C, eds. Neuropsychopharmacology: The Fifth Generation of Progress. New York, NY: Lippincott, Williams and Wilkins; 2002.Google Scholar
11.LeBihan, D, Breton, E, Lallemand, D, et al.MR imaging of intravoxel incoherent motions: Applications to diffusion and perfusion in neurologic disorders. Radiology. 1986;161:401407.CrossRefGoogle Scholar
12.Turner, R, Le Bihan, D, Delannoy, J, Pekar, J. Echo-planar diffusion and perfusion imaging at 2.0 tesla. Paper presented at: Annual Meeting of the Society of Magnetic Resonance in Medicine; 1989; Berkeley, California.Google Scholar
13.Moseley, ME, Cohen, Y, Kucharczyk, J, et al.Diffusion-weighted MR imaging of anisotropic water diffusion in cat central nervous system. Radiology. 1990;176:439446.CrossRefGoogle ScholarPubMed
14.Douek, P, Turner, R, Pekar, J, Patronas, N, LeBihan, D. MR color mapping of myelin fiber orientation. J Comp Assist Tomogr. 1991;15:923929.CrossRefGoogle ScholarPubMed
15.Chien, D, Buxton, RB, Kwong, KK, et al.MR diffusion imaging of the human brain. J Comp Assist Tomogr. 1990;14:514520.CrossRefGoogle ScholarPubMed
16.Basser, PJ, Mattiello, J, LeBihan, D. Estimation of the effective self-diffusion tensor from the NMR spin echo. J Magn Reson B. 1994;103:247254.CrossRefGoogle ScholarPubMed
17.Garrido, L, Wedeen, VJ, Kwong, KK, et al.Anisotropy of water diffusion in the myocardium of the rat. Circ Res. 1994;74:789793.CrossRefGoogle ScholarPubMed
18.Davis, TL, Wedeen, VJ, Weisskof, RM, et al. White matter tract visualization by echo-planar MRI. Abstract presented at the 12th Annual Meeting of the Society of Magnetic Resonance in Medicine. New York, NY; 1993Google Scholar
19.Pierpaoli, C, Basser, PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;36:893906.CrossRefGoogle Scholar
20.Pierpaoli, C, Jezzard, P, Basser, PJ, et al.Diffusion tensor MR imaging of the human brain. Radiology. 1996;201:637648.CrossRefGoogle ScholarPubMed
21.Makris, N, Worth, AJ, Sorensen, AG, et al.Morphometry of in vivo human white matter association pathways with diffusion-weighted magnetic resonance imaging. Ann Neurol. 1997;42:951962.CrossRefGoogle ScholarPubMed
22.Mori, S, Barker, PB. Diffusion magnetic resonance imaging: its principle and applications. Anat Rec. 1999;257:102109.3.0.CO;2-6>CrossRefGoogle ScholarPubMed
23.Jones, DK, Williams, SC, Gasston, D, et al.Isotropic resolution diffusion tensor imaging with whole brain acquisition in a clinically acceptable time. Hum Brain Mapp. 2002;15:216230.CrossRefGoogle Scholar
24.Talairach, J, Szikla, G, Tournoux, P. Atlas D'anatomie Stereotaxique du Telencephale. Paris, France: Masson; 1967.Google Scholar
25.Talairach, J, Tournoux, P. Co-planar Stereotaxic Atlas of the Human Brain. New York, NY: Thieme Medical Publishers, Inc; 1988.Google Scholar
26.Pierpaoli, C, Basser, PJ. Toward a quantitative assessment of diffusion anisotropy. Magn Reson Med. 1996;37:972.Google Scholar
27.Basser, PJ, Pierpaoli, C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B. 1996;111:209219.CrossRefGoogle ScholarPubMed
28.Shimony, JS, McKinstry, RC, Akbudak, E, et al.Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. Radiology. 1999;212:770784.CrossRefGoogle ScholarPubMed
29.Galaburda, AM, Corsiglia, J, Rosen, GD, et al.Planum temporale asymmetry: Reappraisal since Geschwind and Levitsky. Neuropsychologia. 1987;25:853868.CrossRefGoogle Scholar
30.Beevor, . On the course of the fibres of the cingulum and the posterior parts of the CC and fornix in the marmoset monkey. Philosophical Transactions. 1891.Google Scholar
31.Foville, MA. Traite Complet de L'anatomie, de la Physiologie et de la Pathologie du Systeme Nerveux Cerebro-spinal. Fortin, France: Masson Et Cie; 1844.Google Scholar
32.Pandya, DN, Van Hoesen, GW, Mesulam, M-M. Efferent connections of the cingulate gyrus in the rhesus monkey. Exp Brain Res. 1981;42:319330.CrossRefGoogle ScholarPubMed
33.Pandya, DN, Yeterian, E. Peters, A, Jones, E, eds. Architecture and Connections of Cortical Association Areas. New York, NY: Plenum Publishing Corporation; 1985.CrossRefGoogle Scholar
34.Rose, SE, Chen, F, Chalk, JB, et al.Loss of connectivity in Alzheimer's disease: an evaluation of white matter tract integrity with colour coded MR diffusion tensor imaging. J Neurol Neurosurg Psychiatry. 2000;69:528530.CrossRefGoogle ScholarPubMed
35.Virta, A, Barnett, A, Pierpaoli, C. Visualizing and characterizing white matter fiber structure and architecture in the human pyramidal tract using diffusion tensor MRI. Magn Reson Imaging. 1999;17:11211133.CrossRefGoogle ScholarPubMed
36.Meyer, J, Makris, N, Bates, J, et al.MRI-based topographic parcellation of the human cerebral white matter: I. Technical foundations. Neuroimage. 1999;9:117.CrossRefGoogle Scholar
37.Peled, S, Gudbjartsson, H, Westin, C-F, et al.Magnetic resonance imaging shows orientation and asymmetry of white matter fiber tracts. Brain Res. 1998;780:2733.CrossRefGoogle ScholarPubMed
38.Cosgrove, GR, Rauch, SL. Psychosurgery. Neurosurg Clin N Am. 1995;6:167176.CrossRefGoogle ScholarPubMed
39.Rauch, SL, Kim, H, Makris, N, et al.Volume reduction in the caudate nucleus following stereotactic placement of lesions in the anterior cingulate cortex in humans: a morphometric magnetic resonance imaging study. J Neurosurg. 2000;93:10191025.CrossRefGoogle ScholarPubMed
40.Tuch, DS, Weiskoff, RM, Belliveau, JW, et al. High angular resolution diffusion imaging of the human brain. Paper presented at: Annual Meeting of the International Society of Magnetic Resonance in Medicine; 1999; Philadelphia, Penn.Google Scholar
41.Pautler, RG, Silva, AC, Koretsky, AP. In vivo neuronal tract tracing using manganese-enhanced magnetic resonance imaging. Magn Reson Medicine. 1998;40:740748.CrossRefGoogle ScholarPubMed
42.Pajevic, S, Pierpaoli, C. Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: application to white matter fiber tract mapping in the human brain. Magn Reson Med. 1999;42:526540.3.0.CO;2-J>CrossRefGoogle ScholarPubMed
43.Conturo, TE, Lori, NF, Cull, TS, et al.Tracking neuronal fiber pathways in the living human brain. Proc Nat Acad Sci U S A. 1999;96:1042210427.CrossRefGoogle ScholarPubMed
44.Mori, S, Crain, B, Chacko, VP, et al.Three-dimensional tracking of axonal projections in the brain by magnetic resonance imaging. Ann Neurol. 1999;45:265269.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
45.Tuch, DS, Reese, TG, Wiegell, MR, et al.High angular resolution diffusion imaging reveals intravoxel white matter heterogeneity. Magn Reson Med. In press.Google Scholar