Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-22T16:34:50.123Z Has data issue: false hasContentIssue false

Brain alterations potentially associated with aggression and terrorism

Published online by Cambridge University Press:  14 August 2017

Bernhard Bogerts*
Affiliation:
Salus-Institut, Magdeburg, Germany
Maria Schöne
Affiliation:
Salus-Institut, Magdeburg, Germany
Stephanie Breitschuh
Affiliation:
Salus-Institut, Magdeburg, Germany
*
*Address correspondence to: Bernhard Bogerts, Salus-Institut, Salus gGmbH, Seepark 5, 39116 Magdeburg Germany. (Email: [email protected])

Abstract

A large proportion of the persons who join terrorist groups as well as lone-acting terrorists have a history of violent behavior or mental disorder that predated their becoming terrorists. This suggests that brain alterations found to occur in violent perpetrators may also be present in a significant percentage of terrorists. After a short delineation of phylogenetically old neuronal networks that are important for the generation of aggressive behavior in inconspicuous brains, this review summarizes structural and functional brain-imaging studies in violent offenders published over the last 10 years. Depending on the subtype of violence (impulsive or instrumental), deviations in structure or function were mainly found in the prefrontal, orbitofrontal, and insular cortex, as well as in temporolimbic structures (e.g., the amygdala, hippocampus, and parahippocampus). These brain areas are essentially responsible for the control of the archaic neuronal generators of aggression located in the hypothalamus and limbic system. This regional distribution of brain alterations also shows a remarkable overlap with those brain regions that are crucial for such prosocial traits as empathy and compassion. Feelings of superiority, dominance, and satisfaction gained by performing violent and terroristic attacks suggest that a hedonistic component via an activation of brain reward systems plays an additional role. In our current debate about the causes of terrorism, aspects of brain dysfunction should receive more attention.

Type
Review Articles
Copyright
© Cambridge University Press 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1. Bogerts, B. Gehirn und Verbrechen: Neurobiologie von Gewalttaten. In: Schneider F, ed. Entwicklungen der Psychiatrie. Berlin, Heidelberg: Springer; 2006: 335347.Google Scholar
2. Report to the Governor, Medical Aspects, Charles J. Whitman Catastrophe. Austin: The Whitman Archives; 1966. http://alt.cimedia.com/statesman/specialreports/whitman/findings.pdf. Accessed July 6, 2017.Google Scholar
3. Eagleman, D. The brain on trial. Atl Mon. July/August 2011. https://www.theatlantic.com/magazine/archive/2011/07/the-brain-on-trial/308520/. Accessed July 6, 2017.Google Scholar
4. MacLean, PD. Some psychiatric implications of physiological studies on frontotemporal portion of limbic system (visceral brain). Electroencephalogr Clin Neurophysiol. 1952; 4(4): 407418.Google Scholar
5. Hess, WR. Das Zwischenhirn: Syndrome, Lokalisationen, Funktionen. Basel: Schwabe; 1949.Google Scholar
6. Wasman, M, Flynn, JP. Directed attack elicited from the hypothalamus. Arch Neurol. 1962; 6: 220227.Google Scholar
7. Ploog, D. Biologische Grundlagen aggressiven Verhaltens: Psychiatrische und ethologische Aspekte abnormen Verhaltens [in German]. In: Kranz H, Heinrich K, eds. Erste Düsseldorfer Symposium. Stuttgart: Thieme; 1974: 4977.Google Scholar
8. Bogerts, B, Möller-Leimkühler, AM. Neurobiologische Ursachen und psychosoziale Bedingungen individueller Gewalt [Neurobiological and psychosocial causes of individual male violence] [in German]. Nervenarzt. 2013; 84(11): 13291344.Google Scholar
9. Mark, VH, Erwin, FR. Violence and the Brain. New York: Harper & Row; 1970.Google Scholar
10. Klüver, H, Bucy, PC. “Psychic blindness” and other symptoms following bilateral temporal lobectomy in rhesus monkeys. Am J Physiol. 1937; 119: 352353.Google Scholar
11. Bogerts, B. The temporolimbic system theory of positive schizophrenic symptoms. Schizophr Bull. 1997; 23(3): 423436.CrossRefGoogle ScholarPubMed
12. Bogerts, B. The neuropathology of schizophrenic diseases: historical aspects and present knowledge. Eur Arch Psychiatry Clin Neurosci. 1999; 249(Suppl 4): 213.Google Scholar
13. Fazel, S, Gulati, G, Linsell, L, Geddes, JR, Grann, M. Schizophrenia and violence: systematic review and meta-analysis. PLoS Med. 2009; 6(8): e1000120. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC2718581/. Accessed July 6, 2017.Google Scholar
14. Gómez, JM, Verdú, M, González-Megías, A, Méndez, M. The phylogenetic roots of human lethal violence. Nature. 2016; 538(7624): 233237.Google Scholar
15. Choi, JK, Bowles, S. The coevolution of parochial altruism and war. Science. 2007; 318(5850): 636640.Google Scholar
16. Jung, H, Herrenkohl, TI, Lee, JO, Klika, JB, Skinner, ML. Effects of physical and emotional child abuse and its chronicity on crime into adulthood. Violence Vict. 2015; 30(6): 10041018.Google Scholar
17. DiLalla, DL, Carey, G, Gottesman, II, Bouchard, TJ Jr. Heritability of MMPI personality indicators of psychopathology in twins reared apart. J Abnorm Psychol. 1996; 105(4): 491499.Google Scholar
18. Joyal, CC, Putkonen, A, Mancini-Marïe, A, et al. Violent persons with schizophrenia and comorbid disorders: a functional magnetic resonance imaging study. Schizophr Res. 2007; 91(1–3): 97102.Google Scholar
19. Rhee, SH, Waldman, ID. Genetic and environmental influences on antisocial behavior: a meta-analysis of twin and adoption studies. Psychol Bull. 2002; 128(3): 490529.Google Scholar
20. Alia-Klein, N, Goldstein, RZ, Kriplani, A, et al. Brain monoamine oxidase A activity predicts trait aggression. J Neurosci. 2008; 28(19): 50995104.CrossRefGoogle ScholarPubMed
21. Buckholtz, JW, Meyer-Lindenberg, A. MAOA and the neurogenetic architecture of human aggression. Trends Neurosci. 2008; 31(3): 120129.Google Scholar
22. Caspi, A, Moffitt, TE. Gene–environment interactions in psychiatry: joining forces with neuroscience. Nat Rev Neurosci. 2006; 7(7): 583590.Google Scholar
23. Rosell, DR, Siever, LJ. The neurobiology of aggression and violence. CNS Spectr. 2015; 20(3): 254279.Google Scholar
24. Browning, CR. Ordinary Men: Reserve Police Battalion 101 and the Final Solution in Poland. New York: HarperCollins and Aaron Asher Books; 1992.Google Scholar
25. Haney, C, Banks, C, Zimbardo, P. Interpersonal dynamics in a simulated prison. Int J Criminology Penol. 1973; 1: 6997; http://pdf.prisonexp.org/ijcp1973.pdf. Accessed July 6, 2017.Google Scholar
26. Milgram, S. Behavioral study of obedience. J Abnorm Psychol. 1963; 67(4): 371378.Google Scholar
27. Milgram, S. Obedience to Authority: An Experimental View. New York: Harper; 1974.Google Scholar
28. Zimbardo, P. The Lucifer Effect: Understanding How Good People Turn Evil. Random House Reprints; 2008.Google Scholar
29. Möller-Leimkühler, AM, Bogerts, B. Kollektive Gewalt [Collective violence: neurobiological, psychosocial and sociological condition] [in German]. Nervenarzt. 2013; 84(11): 13451358.Google Scholar
30. Bundesamt für Verfassungsschutz. Analyse der den deutschen Sicherheitsbehörden vorliegenden Informationen über die Radikalisierungshintergründe und -verläufe der Personen, die aus islamistischer Motivation aus Deutschland in Richtung Syrien ausgereist sind—so lautet der Titel [in German]; Ständige Konferenz der Innenminister und senatoren der Linder; 2016. http://www.innenministerkonferenz.de/IMK/DE/termine/to-beschluesse/14-12-11_12/anlage-analyse.pdf?__blob=publicationFile&v=2. Accessed July 6, 2017.Google Scholar
31. Pantucci, R, Ellis, C, Chaplais, L. Lone-Actor Terrorism: Literature Review. London: Royal United Service Institute; 2015.Google Scholar
32. Bufkin, JL, Luttrell, VR. Neuroimaging studies of aggressive and violent behavior: current findings and implications for criminology and criminal justice. Trauma, Violence Abuse. 2005; 6(2): 176191.Google Scholar
33. Raine, A, Yang, Y. Neural foundations to moral reasoning and antisocial behavior. Soc Cogn Affect Neurosci. 2006; 1(3): 203213.Google Scholar
34. Weber, S, Habel, U, Amunts, K, Schneider, F. Structural brain abnormalities in psychopaths: a review. Behav Sci Law. 2008; 26(1): 728.Google Scholar
35. Schiltz, K, Witzel, JG, Bausch-Hölterhoff, J, Bogerts, B. High prevalence of brain pathology in violent prisoners: a qualitative CT and MRI scan study. Eur Arch Psychiatry Clin Neurosci. 2013; 263(7): 607616.Google Scholar
36. Floden, D. Frontal lobe function. In: Parsons MW, Hammeke TA, Snyder PJ, eds. Clinical Neuropsychology: A Pocket Handbook for Assessment. Washington, DC: American Psychological Association; 2014: 498524.Google Scholar
37. Olson, IR, Plotzker, A, Ezzyat, Y. The enigmatic temporal pole: a review of findings on social and emotional processing. Brain. 2007; 130(7): 17181731.CrossRefGoogle Scholar
38. Rudebeck, PH, Bannerman, DM, Rushworth, MF. The contribution of distinct subregions of the ventromedial frontal cortex to emotion, social behavior, and decision making. Cogn Affect Behav Neurosci. 2008; 8(4): 485497.Google Scholar
39. Stuss, DT. Functions of the frontal lobes: relation to executive functions. J Int Neuropsychol Soc. 2011; 17(5): 759765.Google Scholar
40. Brower, MC, Price, BH. Neuropsychiatry of frontal lobe dysfunction in violent and criminal behaviour: a critical review. J Neurol Neurosurg Psychiatry. 2001; 71(6): 720726.CrossRefGoogle ScholarPubMed
41. Müller, JL, Gänßbauer, S, Sommer, M, et al. Gray matter changes in right superior temporal gyrus in criminal psychopaths: evidence from voxel-based morphometry. Psychiatry Res. 2008; 163(3): 213222.CrossRefGoogle ScholarPubMed
42. Gregory, S. The antisocial brain: psychopathy matters. Arch Gen Psychiatry. 2012; 69(9): 962972.Google Scholar
43. Leutgeb, V, Leitner, M, Wabnegger, A, et al. Brain abnormalities in high-risk violent offenders and their association with psychopathic traits and criminal recidivism. Neuroscience. 2015; 308: 194201.Google Scholar
44. Domenech, P, Koechlin, E. Executive control and decision-making in the prefrontal cortex. Curr Opin Behav Sci. 2015; 1: 101106.Google Scholar
45. Bertsch, K, Grothe, M, Prehn, K, et al. Brain volumes differ between diagnostic groups of violent criminal offenders. Eur Arch Psychiatry Clin Neurosci. 2013; 263(7): 593606.Google Scholar
46. Davidson, RJ. Dysfunction in the neural circuitry of emotion regulation: a possible prelude to violence. Science. 2000; 289(5479): 591594.Google Scholar
47. Kringelbach, ML, Rolls, ET. The functional neuroanatomy of the human orbitofrontal cortex: evidence from neuroimaging and neuropsychology. Prog Neurobiol. 2004; 72(5): 341372.Google Scholar
48. Rudebeck, PH, Murray, EA. The orbitofrontal oracle: cortical mechanisms for the prediction and evaluation of specific behavioral outcomes. Neuron. 2014; 84(6): 11431156.Google Scholar
49. Schoenbaum, G, Roesch, MR, Stalnaker, TA. Orbitofrontal cortex, decision-making and drug addiction. Trends Neurosci. 2006; 29(2): 116124.Google Scholar
50. Birbaumer, N, Veit, R, Lotze, M, et al. Deficient fear conditioning in psychopathy: a functional magnetic resonance imaging study. Arch Gen Psychiatry. 2005; 62(7): 799805.Google Scholar
51. Yang, Y, Raine, A, Colletti, P, Toga, AW, Narr, KL. Morphological alterations in the prefrontal cortex and the amygdala in unsuccessful psychopaths. J Abnorm Psychol. 2010; 119(3): 546554.Google Scholar
52. Kumari, V, Barkataki, I, Goswami, S, Flora, S, Das, M, Taylor, P. Dysfunctional, but not functional, impulsivity is associated with a history of seriously violent behaviour and reduced orbitofrontal and hippocampal volumes in schizophrenia. Psychiatry Res. 2009; 173(1): 3944.Google Scholar
53. Tiihonen, J, Rossi, R, Laakso, MP, et al. Brain anatomy of persistent violent offenders: more rather than less. Psychiatry Res. 2008; 163(3): 201212.Google Scholar
54. Ermer, E, Cope, LM, Calhoun, VD, Nyalakanti, PK, Kiehl, KA. Aberrant paralimbic gray matter in criminal psychopathy. J Abnorm Psychol. 2012; 121(3): 649658.Google Scholar
55. Boccardi, M, Frisoni, GB, Hare, RD, et al. Cortex and amygdala morphology in psychopathy. Psychiatry Res. 2011; 193(2): 8592.Google Scholar
56. Cope, LM, Shane, MS, Segall, JM, et al. Examining the effect of psychopathic traits on gray matter volume in a community substance abuse sample. Psychiatry Res. 2012; 204(2–3): 91100.Google Scholar
57. Ly, M, Motzkin, JC, Philippi, CL, et al. Cortical thinning in psychopathy. Am J Psychiatry. 2012; 169(7): 743749.Google Scholar
58. Buckner, RL, Andrews-Hanna, JR, Schacter, DL. The brain’s default network: anatomy, function, and relevance to disease. Ann N Y Acad Sci. 2008; 1124: 138.Google Scholar
59. Hahn, B, Ross, TJ, Stein, EA. Cingulate activation increases dynamically with response speed under stimulus unpredictability. Cereb Cortex. 2007; 17(7): 16641671.Google Scholar
60. Leech, R, Sharp, DJ. The role of the posterior cingulate cortex in cognition and disease. Brain. 2014; 137(1): 1232.Google Scholar
61. Yamasaki, S, Yamasue, H, Abe, O, et al. Reduced gray matter volume of pars opercularis is associated with impaired social communication in high-functioning autism spectrum disorders. Biol Psychiatry. 2010; 68(12): 11411147.Google Scholar
62. Bannon, SM, Salis, KL, O’Leary, DK. Structural brain abnormalities in aggression and violent behavior. Aggress Violent Behav. 2015; 25(Pt B): 323331.Google Scholar
63. Kiehl, KA. A cognitive neuroscience perspective on psychopathy: evidence for paralimbic system dysfunction. Psychiatry Res. 2006; 142(2–3): 107128.Google Scholar
64. Miller, BL, Darby, A, Benson, DF, Cummings, JL, Miller, MH. Aggressive, socially disruptive and antisocial behaviour associated with fronto-temporal dementia. Br J Psychiatry. 1997; 170(2): 150154.CrossRefGoogle ScholarPubMed
65. Woermann, FG, van Elst, LT, Koepp, MJ, et al. Reduction of frontal neocortical grey matter associated with an affective aggression in patients with temporal lobe epilepsy: an objective voxel-by-voxel analysis of automatically segmented MRI. J Neurol Neurosurg Psychiatry. 2000; 68: 162169.Google Scholar
66. Howner, K, Eskildsen, SF, Fischer, H, et al. Thinner cortex in the frontal lobes in mentally disordered offenders. Psychiatry Res. 2012; 203(2–3): 126131.Google Scholar
67. Cope, LM, Ermer, E, Gaudet, LM, et al. Abnormal brain structure in youth who commit homicide. Neuroimage Clin. 2014; 4: 800807.Google Scholar
68. Yang, Y, Raine, A, Han, CB, Schug, RA, Toga, AW, Narr, KL. Reduced hippocampal and parahippocampal volumes in murderers with schizophrenia. Psychiatry Res. 2010; 182(1): 913.Google Scholar
69. Puri, BK, Counsell, SJ, Saeed, N, Bustos, MG, Treasaden, IH, Bydder, GM. Regional grey matter volumetric changes in forensic schizophrenia patients: an MRI study comparing the brain structure of patients who have seriously and violently offended with that of patients who have not. BMC Psychiatry. 2008; 8(Suppl 1): S6.Google Scholar
70. Hare, RD. The Hare Psychopathy Checklist–Revised (PCL–R). Toronto: Multi-Health Systems; 1991.Google Scholar
71. Boccardi, M, Ganzola, R, Rossi, R, et al. Abnormal hippocampal shape in offenders with psychopathy. Hum Brain Mapp. 2010; 31(3): 438447.Google Scholar
72. Eres, R, Decety, J, Louis, WR, Molenberghs, P. Individual differences in local gray matter density are associated with differences in affective and cognitive empathy. Neuroimage. 2015; 117: 305310.CrossRefGoogle ScholarPubMed
73. Schiffer, B, Mueller, BW, Scherbaum, N, et al. Disentangling structural brain alterations associated with violent behavior from those associated with substance use disorders. Arch Gen Psychiatry. 2011; 68(10): 10391049.Google Scholar
74. Siever, LJ. Neurobiology of aggression and violence. Am J Psychiatry. 2008; 165(4): 429442.Google Scholar
75. Price, JL. Amygdala. In: Squire LR, ed. New Encyclopedia of Neuroscience. New York: Academic Press; 2008: 14.Google Scholar
76. Sah, P, Faber, ES, Lopez De Armentia, M, Power, J. The amygdaloid complex: anatomy and physiology. Physiol Rev. 2003; 83(3): 803834.Google Scholar
77. Blair, RJ. The amygdala and ventromedial prefrontal cortex in morality and psychopathy. Trends Cogn Sci. 2007; 11(9): 387392.Google Scholar
78. Phelps, EA. Human emotion and memory: interactions of the amygdala and hippocampal complex. Curr Opin Neurobiol. 2004; 14(2): 198202.Google Scholar
79. Phillips, RG, LeDoux, JE. Differential contribution of amygdala and hippocampus to cued and contextual fear conditioning. Behav Neurosci. 1992; 106(2): 274285.Google Scholar
80. Pardini, DA, Raine, A, Erickson, K, Loeber, R. Lower amygdala volume in men is associated with childhood aggression, early psychopathic traits, and future violence. Biol Psychiatry. 2014; 75(1): 7380.Google Scholar
81. Del Bene, VA, Foxe, JJ, Ross, LA, Krakowski, MI, Czobor, P, De Sanctis, P. Neuroanatomical abnormalities in violent individuals with and without a diagnosis of schizophrenia. PLoS One. 2016; 11(12): e0168100. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC5193361/. Accessed July 6, 2017.Google Scholar
82. Motzkin, JC, Newman, JP, Kiehl, KA, Koenigs, M. Reduced prefrontal connectivity in psychopathy. J Neurosci. 2011; 31(48): 1734817357.Google Scholar
83. Craig, MC, Catani, M, Deeley, Q, et al. Altered connections on the road to psychopathy. Mol Psychiatry. 2009; 14(10): 946953; 907.Google Scholar
84. Leutgeb, V, Wabnegger, A, Leitner, M, et al. Altered cerebellar-amygdala connectivity in violent offenders: a resting-state fMRI study. Neurosci Lett. 2016; 610: 160164.Google Scholar
85. Harada, T, Itakura, S, Xu, F, et al. Neural correlates of the judgment of lying: a functional magnetic resonance imaging study. Neurosci Res. 2009; 63(1): 2434.Google Scholar
86. Lang, S, Yu, T, Markl, A, Müller, F, Kotchoubey, B. Hearing others’ pain: neural activity related to empathy. Cogn Affect Behav Neurosci. 2011; 11(3): 386395.Google Scholar
87. Schmahmann, JD. Disorders of the cerebellum: ataxia, dysmetria of thought, and the cerebellar cognitive affective syndrome. J Neuropsychiatry Clin Neurosci. 2004; 16(3): 367378.Google Scholar
88. Demirtas-Tatlidede, A, Schmahmann, JD. Morality: incomplete without the cerebellum? Brain. 2013; 136(8): 20072009.Google Scholar
89. Turner, BM, Paradiso, S, Marvel, CL, et al. The cerebellum and emotional experience. Neuropsychologia. 2007; 45(6): 13311341.Google Scholar
90. Picazio, S, Koch, G. Is motor inhibition mediated by cerebello-cortical interactions? Cerebellum. 2015; 14(1): 4749.Google Scholar
91. Glenn, AL, Raine, A, Yaralian, PS, Yang, Y. Increased volume of the striatum in psychopathic individuals. Biol Psychiatry. 2010; 67(1): 5258.Google Scholar
92. Decety, J, Skelly, LR, Kiehl, KA. Brain response to empathy-eliciting scenarios involving pain in incarcerated psychopaths. JAMA Psychiatry. 2013; 70(6): 638645.Google Scholar
93. Mier, D, Haddad, L, Diers, K, Dressing, H, Meyer-Lindenberg, A, Kirsch, P. Reduced embodied simulation in psychopathy. World J Biol Psychiatry. 2014; 15(6): 479487.Google Scholar
94. Vemuri, K, Surampudi, BR. Evidence of stimulus correlated empathy modes: group ICA of fMRI data. Brain Cogn. 2015; 94: 3243.Google Scholar
95. Yang, Y, Raine, A. Prefrontal structural and functional brain imaging findings in antisocial, violent, and psychopathic individuals: a meta-analysis. Psychiatry Res. 2009; 174(2): 8188.Google Scholar
96. Contreras-Rodriguez, O, Pujol, J, Batalla, I, et al. Functional connectivity bias in the prefrontal cortex of psychopaths. Biol Psychiatry. 2015; 78(9): 647655.Google Scholar
97. Lee, TM, Chan, SC, Raine, A. Strong limbic and weak frontal activation to aggressive stimuli in spouse abusers. Mol Psychiatry. 2008; 13(7): 655656.Google Scholar
98. Harenski, CL, Harenski, KA, Shane, MS, Kiehl, KA. Aberrant neural processing of moral violations in criminal psychopaths. J Abnorm Psychol. 2010; 119(4): 863874.Google Scholar
99. Decety, J, Chen, C, Harenski, C, Kiehl, KA. An fMRI study of affective perspective taking in individuals with psychopathy: imagining another in pain does not evoke empathy. Front Hum Neurosci. 2013; 7: 112.CrossRefGoogle Scholar
100. Pujol, J, Batalla, I, Contreras-Rodríguez, O, et al. Breakdown in the brain network subserving moral judgment in criminal psychopathy. Soc Cogn Affect Neurossci. 2012; 7(8): 917923.Google Scholar
101. Meffert, H, Gazzola, V, den Boer, JA, Bartels, AA, Keysers, C. Reduced spontaneous but relatively normal deliberate vicarious representations in psychopathy. Brain. 2013; 136(8): 25502562.Google Scholar
102. Singer, T, Klimecki, OM. Empathy and compassion. Curr Biol. 2014; 24(18): R875R878.Google Scholar
103. Lee, TM, Chan, SC, Raine, A. Hyperresponsivity to threat stimuli in domestic violence offenders: a functional magnetic resonance imaging study. J Clin Psychiatry. 2008; 70(1): 3645.Google Scholar
104. Decety, J, Skelly, L, Yoder, KJ, Kiehl, KA. Neural processing of dynamic emotional facial expressions in psychopaths. Soc Neurosci. 2014; 9(1): 3649.Google Scholar
105. Prehn, K, Schulze, L, Rossmann, S, et al. Effects of emotional stimuli on working memory processes in male criminal offenders with borderline and antisocial personality disorder. World J Biol Psychiatry. 2013; 14(1): 7178.Google Scholar
106. Pujara, M, Motzkin, JC, Newman, JP, Kiehl, KA, Koenigs, M. Neural correlates of reward and loss sensitivity in psychopathy. Soc Cogn Affect Neurosci. 2014; 9(6): 794801.Google Scholar
107. Sommer, M, Sodian, B, Döhnel, K, Schwerdtner, J, Meinhardt, J, Hajak, G. In psychopathic patients emotion attribution modulates activity in outcome-related brain areas. Psychiatry Res. 2010; 182(2): 8895.Google Scholar
108. Dolan, MC, Fullam, RS. Psychopathy and functional magnetic resonance imaging blood oxygenation level-dependent responses to emotional faces in violent patients with schizophrenia. Biol Psychiatry. 2009; 66(6): 570577.Google Scholar
109. Kumari, V, Das, M, Taylor, PJ, et al. Neural and behavioural responses to threat in men with a history of serious violence and schizophrenia or antisocial personality disorder. Schizophr Res. 2009; 110(1–3): 4758.Google Scholar