Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-10T23:21:44.190Z Has data issue: false hasContentIssue false

Zeolites in Pre-Caldera Pyroclastic Rocks of the Santorini Volcano, Aegean Sea, Greece

Published online by Cambridge University Press:  02 April 2024

Panayota Tsolis-Katagas
Affiliation:
Department of Geology, University of Patras, 261 10 Patras, Greece
Christos Katagas
Affiliation:
Department of Geology, University of Patras, 261 10 Patras, Greece
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The vitric matrix of pre-caldera acid tuff and tuff breccia of the Santorini volcano, Aegean Sea, Greece has been generally replaced by one or more of the following authigenic minerals: K-rich and (K,Ca)-rich clinoptilolite, mordenite, opal-CT, and clay minerals. Halite is also present in some samples. Initial compositional inhomogeneities between the dacitic blocks in tuff breccia and tuff seem to have controlled the type of K-rich heulandite-group zeolite that formed. Mordenite postdates the heulandite-group zeolites and opal-CT. Some mordenite has replaced the rims of glass shards. The alteration minerals are not related to vertical or lateral zonation, and the irregular distribution of their assemblages is attributed to variations in heat flow, ionic activity in interstitial waters, and permeability. The pyroclastic rocks were in a region of active heat flow during and after their emplacement. The formation of authigenic silicates may have led to the sealing of open spaces and fractures, imposing barriers to permeability and subdividing the original open system into smaller closed systems. As alteration progressed, some of the trapped water in each individual domain was consumed in hydration reactions. Salts could have been concentrated by such a process, and halite probably precipitated from solutions of appropriate composition in the individual closed systems.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Alietti, A., 1972 Polymorphism and crystal-chemistry of heulandites and clinoptilolites Amer. Mineral. 57 14481462.Google Scholar
Alietti, A., Brigarti, M. F. and Poppi, L., 1977 Natural Ca-rich clinoptilolites (heulandites of group 3): New data and review N. Jb. Miner. Mh. H.11 493501.Google Scholar
Barberi, F., Innocenti, F., Marinelli, C. and Mazzuoli, R., 1977 Vulcanismo e tettonica a placche: Esempi nell’ area mediterranea Mem. Soc. Geol. It. 13 327358.Google Scholar
Barrer, R. M. and White, E. A. D., 1952 The hydrothermal chemistry of silicates. Part II. Synthetic crystalline sodium aluminosilicates J. Chem. Soc. 286 15611571.CrossRefGoogle Scholar
Boles, J. R., 1972 Composition, optical properties, cell dimensions, and thermal stability of some heulandite group zeolites Amer. Mineral. 57 14631493.Google Scholar
Boles, J. R. and Mumpton, F. A., 1977 Zeolites in deep-sea sediments Mineralogy and Geology of Natural Zeolites Washington, D.C. Reviews in Mineralogy 4, Mineral. Soc. Amer. 137163.CrossRefGoogle Scholar
Boles, J. R. and Mumpton, F. A., 1977 Zeolites in low-grade metamorphic rocks Mineralogy and Geology of Natural Geolites Washington, D.C. Reviews in Mineralogy 4, Mineral. Soc. Amer. 103136.CrossRefGoogle Scholar
Boles, J. R. and Coombs, D. S., 1975 Mineral reactions in zeolitic Triassic tuff, Hokonui Hills, New Zealand Geol. Soc. Amer. Bull. 86 163173.2.0.CO;2>CrossRefGoogle Scholar
Coombs, D. S., Ellis, A. J., Fyfe, W. S. and Taylor, A. M., 1959 The zeolite facies, with comments on the interpretation of hydrothermal syntheses Geochim. Cosmochim. Acta 17 53107.CrossRefGoogle Scholar
Davis, E. N., Bastas, C. and Doumas, C., 1980 Petrology and geochemistry of the metamorphic system of Santorini Thera and the Aegean World, I Athens Tsiveriotis 6179.Google Scholar
Ferrara, G., Fytikas, M., Giuliani, O., Marinelli, G. and Doumas, H. C., 1980 Age of the formation of the Aegean active volcanic arc Thera and the Aegean World Athens Tsiveriotis 3741.Google Scholar
Fouqué, F., 1879 Santorin et ses Éruptions Paris G. Maçon.Google Scholar
Fyticas, M., Giuliani, O., Innocenti, F., Marinelli, G. and Mazzuoli, R., 1976 Geochronological data of recent magmatismi of the Aegean Sea Tectonophysics 31 2934.CrossRefGoogle Scholar
Gottardi, G. and Galli, E., 1985 Natural Zeolites Berlin Springer-Verlag.CrossRefGoogle Scholar
Gottardi, G. and Obradovic, J., 1978 Sedimentary zeolites in Europe Fortschr. Miner. 56 316366.Google Scholar
Gogishvili, V. G., Khundadze, A. G., Politova, Yu V and Urushadze, V. V., 1973 Significance of the boundary layer of solution in the mordenite-analcime relation Geo-chem. Int. 11361144.Google Scholar
Hawkins, D. B., Sheppard, R. A., Gude, A. J. 3rd, Sand, L. B. and Mumpton, F. A., 1978 Hydrothermal synthesis of clinoptilolite and comments on the assemblage phillipsite-clinoptilolite-mordenite Natural Zeolites: Occurrence, Properties, Use Elmsford, New York Pergamon Press 337343.Google Scholar
Hay, R. L., 1963 Stratigraphy and zeolitic diagenesis of the John Day Formation of Oregon Univ. Calif. Pub. in Geol. Sci. 42 199262.Google Scholar
Hay, R. L. (1966) Zeolites and zeolitic reactions in sedimentary rocks: Geol. Soc. Amer. Spec. Pap. 85, 130 pp.Google Scholar
Hay, R. L. and Guldman, S. G., 1987 Diagenetic alteration of silicic ash in Searles Lake, California Clays & Clay Minerals 35 449457.CrossRefGoogle Scholar
Hay, R. L., Sheppard, R. A. and Mumpton, F. A., 1977 Zeolites in open hydrologie systems Mineralogy and Geology of Natural Zeolites Washington, D.C. mineral. Soc. Amer. 93102.CrossRefGoogle Scholar
Hemley, J., 1962 Alteration studies in the system Na2O-Al2O3-SiO2-H2O and K2O-Al2O3-SiO2-H2O: Geol. Soc. Amer. Abstracts for 1961 Geol. Soc. Amer. Spec. Pap. 68 196.Google Scholar
Henderson, J. H., Jackson, M. L., Syers, J. K., Clayton, R. N. and Rex, R. W., 1971 Cristobalite authigenic origin in relation to montmorillonite and quartz origin in bentonites Clays & Clay Minerals 19 229238.CrossRefGoogle Scholar
Hoefs, J. and Doumas, C., 1980 Oxygen isotope composition of volcanic rocks from Santorini and Christiani Thera and the Aegean World, I Athens Tsiveriotis 163170.Google Scholar
Honda, S. and Muffler, L. J. P., 1970 Hydrothermal alteration in core from research drill hole Y-1, Upper Geyser Basin, Yellowstone National Park, Wyoming Amer. Mineral. 55 17141737.Google Scholar
Iijima, A., 1974 Clay and zeolitic alteration zones surrounding Kuroko deposits in the Hokuroku District, northern Akita, as submarine hydrothermal-diagenetic alteration products Mining Geol. Special Issue 6 267289.Google Scholar
Iijima, A., Utada, M. and Gould, R. F., 1971 Present-day zeolitic diagenesis of the Neogene géosynclinal deposits in the Niigata oil field, Japan Molecular Sieve Zeolites I, Advances in Chemistry Series Washington, D.C. Amer. Chem. Soc 342349.Google Scholar
Innocenti, F., Manetti, P., Peccerillo, A. and Poli, G., 1979 Inner arc volcanism in NW Aegean Arc: Geochemical and geochronological data: TV Jb. Min. Jg. 145158.Google Scholar
Kanaris, J., 1981 Discovery of a sedimentary zeolitic deposit in Thera Island. Unpublished report Athens Institute of Geology and Mineral Exploration.Google Scholar
Kavourides, T.h. Karidakis, G., Kolios, N., Kouris, D. and Fytikas, M., 1982 Geothermal research in Santorini Island: Unpublished report Athens Institute of Geology and Mineral Exploration.Google Scholar
Keith, T. E. and Staples, L. W., 1985 Zeolites in Eocene basaltic pillow lavas of the Siletz River Volcanics, Central Coast Range, Oregon Clays & Clay Minerals 33 135144.CrossRefGoogle Scholar
Kristmannsdóttir, H., Tomasson, J., Sand, L. B. and Mumpton, F. A., 1978 Zeolite zones in geothermal areas in Iceland Natural Zeolites: Occurrence, Properties, Use New York Pergamon Press, Elmsford 277284.Google Scholar
Mann, A. C., 1983 Trace element geochemistry of high alumina basalt-andesite-dacite-rhyodacite lavas of the main volcanic series of Santorini volcano, Greece Contrib. Mineral. Petrol. 84 4357.CrossRefGoogle Scholar
Michard, G. and Helgeson, H. C., 1987 Controls of the chemical composition of geothermal waters Chemical Transport in Metaso-maticProcesses Dordrecht, The Netherlands D. Reidei Publ. 323353.CrossRefGoogle Scholar
Mumpton, F.A., 1960 Clinoptilolite redefined mer. Mineral. 45 351369.Google Scholar
Mumpton, F. A., Sand, L. B. and Mumpton, F. A., 1978 Natural zeolites: A new industrial mineral commodity Natural Zeolites: Occurrence, Properties, Use New York Pergamon Press, Elmsford 327.Google Scholar
Mumpton, F. A. and Ormsby, W. C., 1976 Morphology of zeolites in sedimentary rocks by scanning electron microscopy Clays & Clay Minerals 24 123.CrossRefGoogle Scholar
Nicholls, I. A., 1971 Petrology of Santorini volcano, Cyclades, Greece J. Petrology 12 67119.CrossRefGoogle Scholar
Papastamatiou, J., 1958 Sur l’âge des calcaires cristallins de l’île de Théra (Santorini) Bull. Geol. Soc. Greece 3 104113.Google Scholar
Passaglia, E., 1975 The crystal chemistry of mordenite Contrib. Mineral. Petrol. 50 6577.CrossRefGoogle Scholar
Pichler, H. and Kussmaul, S., 1972 The cale-alcaline volcanic rocks of the Santorini Group (Aegean Sea, Greece) N. Jb. Miner. Abh. 116 268307.Google Scholar
Pichler, H., Günther, D. and Kussmaul, S., 1980 Geological map of Thera Island, scale 1:50.000 Athens, Greece Institute of Geology and Mineral Exploration.Google Scholar
Ratterman, N. G. and Surdam, R. C., 1981 Zeolite mineral reactions in a tuff in the Laney Member of the Green River Formation, Wyoming Clays & Clay Minerals 29 365377.CrossRefGoogle Scholar
Reck, H., 1936 Santorin—Der Werdegang eines Inselvulkans und sein Ausbruch 1925–1928 .Google Scholar
Reynolds, W. R., 1970 Mineralogy and stratigraphy of Lower Tertiary clays and clay stones of Alabama J. Sediment. Petrol. 40 829838.Google Scholar
Reynolds, R.C. Jr. and Anderson, D.M., 1967 Cristobalite and clinoptilolite in bentonite beds of the Col ville Group, northern Alaska J. Sediment. Petrol. 37 966969.CrossRefGoogle Scholar
Shepard, A. O., 1961 A heulandite-like mineral associated with clinoptilolite in tuffs of Oak Springs Formation, Nevada Test Site, Nye Co., Nevada: in Geological Survey Research U.S. Geol. Surv. Prof. Pap. 424 C320C322.Google Scholar
Sheppard, R. A., 1971 Zeolites in sedimentary deposits of the United States—A review Molecular Sieve Zeolites I, Advances in Chemistry Series 101 279310.Google Scholar
Sheppard, R. A. and Gude, A. J. 3rd (1973) Zeolites and associated authigenic silicate minerals in tuffaceous rocks of the Big Sandy Formation, Mohave County, Arizona: U.S. Geol. Surv. Prof. Pap. 830, 36 pp.Google Scholar
Stonecipher, S. A., Sand, L. B. and Mumpton, F. A., 1978 Chemistry and deep-sea phillip-site, clinoptilolite, and host sediments Natural Zeolites: Occurrence, Properties, Use Elmsford, New York Pergamon Press 221234.Google Scholar
Tataris, A. A., 1964 The Eocene in the semi-metamorphosed basement of Thera Island Bull. Geol. Soc. Greece 6 232238.Google Scholar
Trommsdorff, V., Skippen, G. and Helgeson, H. C., 1987 Metasomatism involving fluids in CO2-H2O-NaCl Chemical Transport in Metasomatic Processes The Netherlands D. Reidel Publ., Dordrecht 133152.CrossRefGoogle Scholar
Walton, A. W., 1975 Zeolitic diagenesis in Oligocene volcanic sediments, Trans-Pecos Texas Geol. Soc. Amer. Bull. 86 615624.2.0.CO;2>CrossRefGoogle Scholar
White, D. E., 1957 Magmatic, connate, and metamorphic waters Geol. Soc. Amer. Bull. 68 16591682.CrossRefGoogle Scholar