Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T08:05:49.493Z Has data issue: false hasContentIssue false

X-Ray Study of the Interlayer Region of a Barium-Vermiculite

Published online by Cambridge University Press:  01 July 2024

M. I. Telleria
Affiliation:
C.S.I.R.O. Division of Soils, Glen Osmond, South Australia 5061
P. G. Slade
Affiliation:
C.S.I.R.O. Division of Soils, Glen Osmond, South Australia 5061
E. W. Radoslovich
Affiliation:
C.S.I.R.O. Division of Soils, Glen Osmond, South Australia 5061
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An X-ray diffraction analysis of a barium-vermiculite shows it to have a triclinic unit cell with the following dimensions a = 5.33, b = 9.26, c = 12.47 Å, α = 100.75°, ß = 93.5° and γ = 90°. The proposed structure, adjusted in space group Cl, has the exchangeable cations approximately over the ditrigonal holes of the silicate surface and on either side of a hexagonal network of water molecules extending over the middle of the interlamellar region. The interlayer material imposes a relative displacement of ± b/4 on adjacent silicate sheets. The importance of these displacements, not previously found in layer silicates, is emphasized.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Besson, G., Mifsud, C., Tchoubar, C. and Mering, J. (1974a) Order and disorder relations in the distribution of the substitution in smectites, illites and vermiculites: Clays & Clay Minerals 22, 379384.CrossRefGoogle Scholar
Besson, G., Tchoubar, C. and Mering, J. (1974b) Phénomèmes de diffraction produits par les systèmes stratifiés à distribution d'atomes partiellement différente de couche à couche: J. Appl. Cryst. 7, 345350.CrossRefGoogle Scholar
Bradley, W. F. and Serratosa, J. M. (1960) A discussion of the water content of vermiculite: Clays and Clay Minerals, Proc. 7th Nat. Conf. pp. 260270. Pergamon Press, Oxford.Google Scholar
Busing, W. R. and Levy, H. A. (1957) High-speed computation of the absorption correction for single crystal diffraction measurements: Acta Cryst. 10, 180182.CrossRefGoogle Scholar
Busing, W. R., Martin, K. O. and Levy, H. A. (1962) ORFLS, A FORTRAN Crystallographic Least-Squares Program: Oak Ridge National Laboratory, Tennessee.CrossRefGoogle Scholar
Cruickshank, D. W. J., Pilling, D. E., Bujosa, A., Lovell, F. M. and Truter, M. R. (1961) Computing Methods in the Phase Problem: Pergamon Press, Oxford.Google Scholar
De la Calle, C., Suquet, H. and Pezerat, H. (1975a) Glissement de feuillets accompagnant certains échanges cationiques dans les monocristaux de vermiculites: Bull. Gr. Fr. Arg. XXVII, 3149.Google Scholar
De la Calle, C., Dubernat, J., Suquet, H. and Pezerat, H. (1975b) Crystal structure of two layer Mg–vermiculites and Na, Ca–vermiculites: Abstracts 1975 Int. Clay Conf., Mexico, p. 64.Google Scholar
Farmer, V. C. and Russell, J. D. (1967) Infrared absorption spectrometry in clay studies: Clays and Clay Minerals, Proc. 15th Nat. Conf. pp. 121141. Pergamon Press, Oxford.Google Scholar
Fripiat, J. J., Chaussidon, J. and Touillaux, R. (1960) Study of dehydration of montmorillonite and vermiculite by i.r.: J. Phys. Chem. 64, 12341241.CrossRefGoogle Scholar
Fernandez, M., Alcover, J. F., Serratosa, J. M. and Raussell-Colom, J. A. (1975) I.r. absorption and X-ray diffraction study of hydrated and dehydrated vermiculite saturated with various cations: Abstracts 1975 Int. Clay Conf., Mexico, p. 78.Google Scholar
Gruner, J. W. (1934) Vermiculite and hydrobiotite structures: Am. Miner. 19, 557575.Google Scholar
Gruner, J. W. (1939). Water layers in vermiculite: Am. Miner. 24, 428433.Google Scholar
Hendricks, S. B. and Jefferson, M. E. (1938) Crystal structure of vermiculites and mixed vermiculite–chlorites: Am. Miner. 23, 851863.Google Scholar
Mamy, J. (1968) Recherches sur l'hydration de la montmorillonite: propriétés diélectriques et structure du film d'eau: Ann. Agron. 19, (3), 183292.Google Scholar
Mathieson, A. Mc. L. (1958) Mg–vermiculite: a refinement and re-examination of the crystal structure of the 14.36 Å phase: Am. Miner. 43, 216227.Google Scholar
Mathieson, A. Mc. L. and Walker, G. F. (1954) Crystal structure of magnesium–vermiculite: Am. Miner. 39, 231255.Google Scholar
Norrish, K. (1973) Factors in the weathering of mica to vermiculite: Proc. Int. Clay Conf., Madrid, pp. 417432.Google Scholar
Pezerat, H. and Mering, J. (1967) Recherches sur la position des cations échangeables et de l'eau dans les montmorillonites: C.R. Acad. Sci., Paris 265, 529532.Google Scholar
Russell, J. D. and Farmer, V. C. (1964) Infrared spectroscopic study of the dehydration of montmorillonite and saponite: Clay Min. Bull. 5, 443.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W. (1966) Crystal structure of a two-layer Mg–vermiculite: Am. Miner. 51, 11241143.Google Scholar