Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2025-01-03T14:25:02.511Z Has data issue: false hasContentIssue false

X-ray Diffraction Line Broadening on Vibrating Dry-Milled Two Crows Sepiolite

Published online by Cambridge University Press:  01 January 2024

Joaquin Bastida*
Affiliation:
Departemento de Geología, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
Marek A. Kojdecki
Affiliation:
Instytut Matematyki i Kryptologii, Wojskowa Akademia Techniczna, 00-908, Warszawa, Poland
Pablo Pardo
Affiliation:
Departemento de Geología, Universidad de Valencia, 46100 Burjasot, Valencia, Spain
Pedro Amorós
Affiliation:
Instituto de Ciencia de Materiales, Universidad de Valencia, 46071 Paterna, Valencia, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A reference sample of sepiolite and products of its comminution by vibrating dry-milling have been studied using X-ray diffraction (XRD) line-broadening analysis, complementary field emission scanning electron microscopy (FESEM) images and surface area measurements. The apparent crystallite sizes determined via XRD are in agreement with observations on FESEM images. The sepiolite aggregates consist of lath-shaped agglutinations of prisms and pinacoids elongated along [001], each lath including several crystallites in that direction. The surface area magnitudes are in the range of previous experimental measurements of other sepiolites. The results obtained show the effectiveness of vibro-milling as the procedure to use for the comminution of sepiolite.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Alvarez, A., Singer, A. and Galán, E., (1984) Sepiolite: properties and uses Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 253289.Google Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 1125.Google Scholar
Bertaut, E.F., (1950) Raies de Debye-Scherrer et répartition des dimensions des domaines de Bragg dans les poudres polycristallines Acta Crystallographica 3 1419 10.1107/S0365110X50000045.CrossRefGoogle Scholar
Borg, I.Y. and Smith, D.K., (1969) Calculated X-ray powder patterns for silicate minerals Geological Society of America Memoires 122 582584.Google Scholar
Brauner, K. and Preisinger, A., (1956) Struktur und Entstehung des sepioliths Tschechoslowakische Mineralogische und Petrographische Mitteilungen 6 120140 10.1007/BF01128033.CrossRefGoogle Scholar
Brunauer, P. Emmett, H. and Teller, E., (1938) Adsorption of Gases in Multimolecular Layers Journal of the American Chemical Society 60 309319 10.1021/ja01269a023.CrossRefGoogle Scholar
Caillère, S. Hénin, S. and Rautureau, M., (1982) Minéralogie des Argiles Paris Mason vol. 2.Google Scholar
Causin, P. Nusinovici, J. and Beard, D.W., (1989) Specific data handling and new enhancements in a Search/Match program Advances in X-ray Analysis 32 531538 10.1007/978-1-4757-9110-5_64.CrossRefGoogle Scholar
Clausell, J.V., (2001) Análisis microestructural de caolinita y gánesis de caolines en el Macizo Ibérico Cadernos Laboratorio Xeoloxico Laxe 26 1199.Google Scholar
Cornejo, J. and Hermosin, M.C., (1988) Structural alteration of sepiolite by dry grinding Clay Minerals 23 391398 10.1180/claymin.1988.023.4.06.CrossRefGoogle Scholar
de Keijser, T.H. Langford, J.I. Mittemeijer, E.J. and Vogels, A.B.P., (1982) Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening Journal of Applied Crystallography 15 308314 10.1107/S0021889882012035.CrossRefGoogle Scholar
de Keijser, T.H. Mittemeijer, E.J. and Rozendaal, H.C.F., (1983) The determination of crystallite-size and lattice-strain parameters in conjunction with the profile-refinement method for the determination of crystal structures Journal of Applied Crystallography 16 309316 10.1107/S0021889883010493.CrossRefGoogle Scholar
Delhez, R. de Keijser, T.H. and Mittemeijer, E.J., (1982) Determination of crystallite size and lattice distortions through X-ray diffraction line profile analysis. Recipes, methods and comments Fresenius Journal of Analytical Chemistry 312 116 10.1007/BF00482725.CrossRefGoogle Scholar
Donnay, J.D.H. and Harker, D., (1937) A new law of crystal morphology extending the law of Bravais American Mineralogist 22 446467.Google Scholar
Dowty, E., (1980) Computing and drawing crystal shapes American Mineralogist 65 465471.Google Scholar
Grim, R.E., (1968) Clay Mineralogy New York McGraw-Hill 596 pp.Google Scholar
Guinebretière, R., (2002) Diffraction des rayons X sur echantillons polycristallins Paris Hermes Science Publications 287 pp.Google Scholar
Harben, P. and Kuzvart, M., (1999) Industrial Minerals: A Global Geology London Industrial Minerals Information plc 476 pp.Google Scholar
Hibino, T. Tsunashima, A. Yamazaki, A. and Otsuka, R., (1995) Model calculation of sepiolite surface areas Clays and Clay Minerals 43 391396 10.1346/CCMN.1995.0430401.CrossRefGoogle Scholar
ICDD, PDF-2 on CD-ROM, Release 2002 (2002) Pennsylvania International Centre for Diffraction Data.Google Scholar
Jones, B.F. Galán, E. and Bailey, S.W., (1988) Sepiolite and palygorskite Hydrous Phyllosilicates Washington, D.C Mineralogical Society of America 631674 10.1515/9781501508998-021.CrossRefGoogle Scholar
Klug, H.P. and Alexander, L.E., (1974) X-ray Diffraction Procedures for Polycrystalline and Amorphous Materials New York John Wiley & Sons 965 pp.Google Scholar
Kojdecki, M.A., (2001) Deconvolution by example — computational test of effective algorithms Materials Science Forum 378–381 1217 10.4028/www.scientific.net/MSF.378-381.12.CrossRefGoogle Scholar
Kojdecki, M.A. Bastida, J. Pardo, P. and Amorós, P., (2005) Crystalline microstructure of sepiolite influenced by grinding Journal of Applied Crystallography 38 888899 10.1107/S0021889805026476.CrossRefGoogle Scholar
Langford, J.I., (1978) A rapid method for analysing the breadths of diffraction and spectral lines using the Voigt function Journal of Applied Crystallograpy 11 1014 10.1107/S0021889878012601.CrossRefGoogle Scholar
Langford, J.I., Prince, E. and Stalick, J.K., (1992) The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition Accuracy in Powder Diffraction II Boulder, Colorado Special Publication, National Institute of Standards and Technology 110126 846 pp.Google Scholar
Langford, J.I. and Louër, D., (1996) Powder Diffraction Reports on Progress in Physics 59 131234 10.1088/0034-4885/59/2/002.CrossRefGoogle Scholar
Lopez Galindo, A. and Sanchez Navas, A., (1989) Criterios morfológicos, cristalográficos y geoquímicos de diferenciación entre sepiolitas de origen hidrotermal y sedimentario Boletin Sociedad Española de Mineralogía 12 399409.Google Scholar
Martin Vivaldi, J.L. Robertson, R.H.S. and Gard, J.A., (1971) Palygorskite and sepiolite (the hormites) Electron-Optical Investigation of Clays London Mineralogical Society 255275.CrossRefGoogle Scholar
Mittemeijer, E.J. and Scardi, P., (2003) Diffraction Analysis of the Microstructure of Materials Berlin Springer-Verlag 552 pp.Google Scholar
Nagata, H. Shimoda, S. and Sudo, T., (1974) On dehydration of bound water sepiolite Clays and Clay Minerals 22 285293 10.1346/CCMN.1974.0220310.CrossRefGoogle Scholar
Niskanen, E., (1964) Reduction of orientation effects in the quantitative X-ray diffraction analyses of kaolin minerals American Mineralogist 49 705714.Google Scholar
Post, J.L., (1978) Sepiolite deposits of the Las Vegas, Nevada area Clays and Clay Minerals 26 5864 10.1346/CCMN.1978.0260107.CrossRefGoogle Scholar
Post, J.L. Janke, N.C., Singer, A. and Galán, E., (1984) Ballarat sepiolite, Inyo County, California Palygorskite-Sepiolite. Occurrences, Genesis and Uses Amsterdam Elsevier 159169.Google Scholar
Rautureau, M., (1974) Analyse structurelle de la sepiolite par microdiffraction electronique France Université d’Orleans Thèse.Google Scholar
Rautureau, M. and Tchoubar, C., (1974) Precisions concernant l’analyse structurelle de la sepiolite par microdiffraction electronique Comptes Rendues Hebdomadaires Académie des Sciences de Paris 278B 2528.Google Scholar
Rautureau, M. and Tchoubar, C., (1976) Structural analysis of sepiolite by selected area electron diffraction; relations with chemical properties Clays and Clay Minerals 24 4349 10.1346/CCMN.1976.0240105.CrossRefGoogle Scholar
Santarén, J. and Alvarez, A. (1994) Assessment of the health effects of mineral dusts. The sepiolite case. Industrial Minerals, April, 1994, 101114.Google Scholar
Serrano, F.J. Bastida, J. Amigó, J.M. and Sanz, A., (1996) XRD line broadening studies on mullite Crystal Research and Technology 31 10851093 10.1002/crat.2170310818.CrossRefGoogle Scholar
Serratosa, J.M., (1979) Surface properties of fibrous clay minerals Proceedings of the International Clay Conference 1978, Oxford Amsterdam Elsevier 99109.Google Scholar
Snyder, R.L. Fiala, J. and Bunge, H.J., (1999) Defect and Microstructure Analysis by Diffraction Oxford, UK Oxford Science Publications 785 pp.Google Scholar
Stanton, M.F. Layard, M. Tegeris, A. Miller, E. and Smith, A., (1981) Relations of particle dimension to carcinigenity of amphibole asbestos and other fibrous minerals Journal of the National Cancer Institution 67 965975.Google ScholarPubMed
Vermeulen, A.C. and Delhez, R., (2004) Line Profile Analysis (LPA) Methods: Systematic ranking of the quality of their basic assumptions Materials Science Forum 443–444 127130 10.4028/www.scientific.net/MSF.443-444.127.CrossRefGoogle Scholar
Vicente, M.A. López Gonzalez, J. and Bañares, M.A., (1994) Acid activation of a Spanish sepiolite. Physicochemical characterization, free silica content and surface area of obtained products Clay Minerals 29 361367 10.1180/claymin.1994.029.3.07.CrossRefGoogle Scholar
Virta, R.L. (2004) Clay and Shale. 38 pp. in: Minerals Yearbook 2003. URL: .Google Scholar
Warren, B.E. and Averbach, B.L., (1950) The effect of cold work distortion on X-ray patterns Journal of Applied Physiscs 21 959999.Google Scholar
Warren, B.E., (1955) A generalised treatment of cold work in powder patterns Acta Crystallographica 8 483486 10.1107/S0365110X55001503.CrossRefGoogle Scholar
Warshaw, C. and Roy, R., (1961) Classification and scheme for the identification of layer silicates Geological Society of America Bulletin 72 14551492 10.1130/0016-7606(1961)72[1455:CAASFT]2.0.CO;2.CrossRefGoogle Scholar
Wilson, A.J.C., (1967) Elements of X-ray Crystallography Reading, Massachusetts Addison Wesley 255 pp.Google Scholar
Wilson, I. (2004) Special clays. Industrial Minerals, November 2004, 5461.Google Scholar
Yücel, A. Rautureau, M. Tchoubar, D. and Tchoubar, C., (1980) Calculation of the X-ray powder reflection profiles of very small needle-like crystals. I. Method Journal of Applied Crystallography 13 370374 10.1107/S0021889880012320.CrossRefGoogle Scholar
Yücel, A. Rautureau, M. Tchoubar, D. and Tchoubar, C., (1981) Calculation of the X-ray powder reflection profiles of very small needle-like crystals. II. Quantitative results on Eskiseihir fibres Journal of Applied Crystallography 14 451454 10.1107/S0021889881009758.CrossRefGoogle Scholar