Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-22T17:46:40.622Z Has data issue: false hasContentIssue false

XAS Study of Fe Mineralogy in a Chronosequence of Soil Clays Formed in Basaltic Cinders

Published online by Cambridge University Press:  01 January 2024

Leslie L. Baker*
Affiliation:
Soil and Land Resources Division, University of Idaho, Moscow, ID 83844-2339, USA
Daniel G. Strawn
Affiliation:
Soil and Land Resources Division, University of Idaho, Moscow, ID 83844-2339, USA
Karen L. Vaughan*
Affiliation:
Soil and Land Resources Division, University of Idaho, Moscow, ID 83844-2339, USA
Paul A. McDaniel
Affiliation:
Soil and Land Resources Division, University of Idaho, Moscow, ID 83844-2339, USA
*
* E-mail address of corresponding author: [email protected]
Current address: USDA-NRCS, Utah Snow Survey Office, Salt Lake City, UT 84116 USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The characterization of poorly crystalline minerals formed by weathering is difficult using conventional techniques. The objective of this study was to use cutting-edge spectroscopic techniques to characterize secondary Fe mineralogy in young soils formed in basaltic cinders in a cool, arid environment. The mineralogy of a chronosequence of soils formed on 2, 6, and 15 thousand year old basaltic cinders at Craters of the Moon National Monument (COM) was examined using synchrotron-based X-ray absorption fine structure (XAFS) spectroscopy in combination with selective extractions. Fe K-edge XAFS is useful for determining speciation in poorly crystalline materials such as young weathering products. Over 86% of Fe in the soil clay fractions was contained in poorly crystalline materials, mostly in the form of ferrihydrite, with the remainder in a poorly crystalline Fe-bearing smectite. The XAFS spectra suggest that ferrihydrite in the 15 ka soil clay is more resistant to ammonium oxalate (AOD) extraction than is ferrihydrite in the younger materials. Fe in the poorly crystalline smectite is subject to dissolution during citrate-bicarbonate- dithionite (CBD) extraction. The results indicate that relatively few mineralogical changes occur in these soils within the millennial time frame and under the environmental conditions associated with this study. Although the secondary mineral suite remains similar in the soils of different ages, ferrihydrite crystallinity appears to increase with increasing soil age.

Type
Article
Copyright
Copyright © Clay Minerals Society 2010

References

Bartholomay, R.C., Knobel, L.L., and Davis, L.C., 1989 Mineralogy and grain size of surficial sediment from the Big Lost River drainage and vicinity, with chemical and physical characteristics of geologic materials from selected sites at the Idaho National Engineering Laboratory, Idaho USA USGS Open File Report 89–384. U.S. Geological Survey, Idaho Falls, Idaho 10.3133/ofr89384.CrossRefGoogle Scholar
Chadwick, O.A., and Chorover, J., 2001 The chemistry of pedogenic thresholds Geoderma 100 321353 10.1016/S0016-7061(01)00027-1.CrossRefGoogle Scholar
Chadwick, O.A., Gavenda, R.T., Kelly, E.F., Ziegler, K., Olson, C.G., Elliott, W.C., and Hendricks, D.M., 2003 The impact of climate on the biogeochemical functioning of volcanic soils Chemical Geology 202 195223 10.1016/j.chemgeo.2002.09.001.CrossRefGoogle Scholar
Chorover, J., DiChiaro, M.J., and Chadwick, O.A., 1999 Structural charge and cesium retention in a chronosequence of tephritic soils Soil Science Society of America Journal 63 169177 10.2136/sssaj1999.03615995006300010024x.CrossRefGoogle Scholar
Chorover, J., Amistadi, M.K., and Chadwick, O.A., 2004 Surface charge evolution of mineral-organic complexes during pedogenesis in Hawaiian basalt Geochimica et Cosmochimica Acta 68 48594876 10.1016/j.gca.2004.06.005.CrossRefGoogle Scholar
Christidis, G.E., 2006 Genesis and compositional heterogeneity of smectites. Part III: Alteration of basic pyroclastic rocks-A case study from the Troodos Ophiolite Complex, Cyprus American Mineralogist 91 685701 10.2138/am.2006.2001.CrossRefGoogle Scholar
Colman, S.M., 1982 Clay mineralogy of weathering rinds and possible implications concerning the sources of clay minerals in soils Geology 10 370375 10.1130/0091-7613(1982)10<370:CMOWRA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Colman, S.M., 1982 Chemical Weathering of Basalts and Andesites: Evidence from Weathering Rinds Washington, D.C. U.S. Geological Survey Professional Paper 1246. Government Printing Office.Google Scholar
Day, T.A., and Wright, R.G., 1989 Positive plant spatial association with Eriogonum ovalifolium in primary succession on cinder cones: seed-trapping nurse plants Plant Ecology 80 3745 10.1007/BF00049139.CrossRefGoogle Scholar
Dold, B., 2003 Dissolution kinetics of schwertmannite and ferrihydrite in oxidized mine samples and their detection by differential X-ray diffraction (DXRD) Applied Geochemistry 18 15311540 10.1016/S0883-2927(03)00015-5.CrossRefGoogle Scholar
Drits, V.A., Sakharov, B.A., Salyn, A.L., and Manceau, A., 1993 Structural model for ferrihydrite Clay Minerals 28 185207 10.1180/claymin.1993.028.2.02.CrossRefGoogle Scholar
Dyar, M.D., Delaney, J.S., and Sutton, S.R., 2001 Fe XANES spectra of iron-rich micas European Journal ofMineralogy 13 10791098 10.1127/0935-1221/2001/0013-1079.CrossRefGoogle Scholar
Dyar, M.D., Lowe, E.W., Guidotti, C.V., and Delaney, J.S., 2002 Fe3+ and Fe2+ partitioning among silicates in metapelites: A synchrotron micro-XANES study American Mineralogist 87 514522 10.2138/am-2002-0414.CrossRefGoogle Scholar
Eggleton, R.A., Foudoulis, C., and Varkevisser, D., 1987 Weathering of basalt; changes in rock chemistry and mineralogy Clays and Clay Minerals 35 161169 10.1346/CCMN.1987.0350301.CrossRefGoogle Scholar
Fieldes, M., 1955 Clay mineralogy of New Zealand soils, Part II: Allophane and related mineral colloids New Zealand Journal of Science and Technology B37 336350.Google Scholar
Gates, W.P., Slade, P.G., Manceau, A., and Lanson, B., 2002 Site occupancies by iron in nontronites Clays and Clay Minerals 50 223239 10.1346/000986002760832829.CrossRefGoogle Scholar
Gee, G.W., Bauder, J.W., and Klute, A., 1986 Particle-size analysis Methods of Soil Analysis. Part 1 USA Soil Science Society of America and American Society of Agronomy, Madison, Wisconsin 383441.Google Scholar
Glasmann, J.R., and Simonson, G.H., 1985 Alteration of basalt in soils of western Oregon Soil Science Society ofAmerica Journal 49 262273 10.2136/sssaj1985.03615995004900010053x.CrossRefGoogle Scholar
Gualtieri, A.F., Moen, A., and Nicholson, D.G., 2000 XANES study of the local environment of iron in natural kaolinites European Journal of Mineralogy 12 1723 10.1127/ejm/12/1/0017.CrossRefGoogle Scholar
Harris, W., White, G.N., Ulery, A.L., and Drees, L.R., 2008 X-ray diffraction techniques for soil mineral identification Methods of Soil Analysis. Part 5. Mineralogical Methods USA Soil Science Society of America, Madison, Wisconsin 81115.Google Scholar
Hay, R.L., and Jones, B.F., 1972 Weathering of basaltic tephra on the island of Hawaii Geological Society of America Bulletin 83 317332 10.1130/0016-7606(1972)83[317:WOBTOT]2.0.CO;2.CrossRefGoogle Scholar
Jackson, M.L., Lim, C.H., Zelazny, L.W., and Klute, A., 1986 Oxides, hydroxides, and aluminosilicates Methods of Soil Analysis 2nd edition USA Soil Science Society of America, Madison, Wisconsin 101142.Google Scholar
Karlsson, T., and Persson, P., 2009 Coordination chemistry and hydrolysis of Fe(III) in a peat humic acid studied by X-ray absorption spectroscopy Geochimica et Cosmochimica Acta 74 3040 10.1016/j.gca.2009.09.023.CrossRefGoogle Scholar
Karlsson, T., Persson, P., Skyllberg, U., Morth, C.-M., and Giesler, R., 2008 Characterization of iron(III) in organic soils using extended x-ray absorption fine structure spectroscopy Environmental Science and Technology 42 54495454 10.1021/es800322j.CrossRefGoogle ScholarPubMed
Kodama, H., and Wang, C., 1989 Distribution and characterization of noncrystalline inorganic components in spodosols and spodosol-like soils Soil Science Society of America Journal 53 526534 10.2136/sssaj1989.03615995005300020037x.CrossRefGoogle Scholar
Komadel, P., Madejova, J., and Stucki, J.W., 1995 Reduction and reoxidation of nontronite: Questions of reversibility Clays and Clay Minerals 43 105110 10.1346/CCMN.1995.0430112.CrossRefGoogle Scholar
Kuntz, M.A., Champion, D.E., Spiker, E.C., and Lefebvre, R.H., 1986 Contrasting magma types and steady-state, volume-predictable, basaltic volcanism along the Great Rift, Idaho Geological Society of America Bulletin 97 579594 10.1130/0016-7606(1986)97<579:CMTASV>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Kuntz, M.A., Champion, D.E., Lefebvre, R.H., and Covington, H.R., 1989 Geologic Map of the Inferno Cone Quadrangle, Butte County, Idaho USA U.S. Geological Survey Geologic Quadrangle Map GQ-1632.Google Scholar
Malinowski, E.R., 1978 Theory of error for target factor analysis with applications to mass spectrometry and nuclear magnetic resonance spectrometry Analytica Chimica Acta 103 339354 10.1016/S0003-2670(01)83099-3.CrossRefGoogle Scholar
Malinowski, E.R., 1991 Factor Analysis in Chemistry 2nd edition New York Wiley.Google Scholar
Manceau, A., 2009 Evaluation of the structural model for ferrihydrite derived from real-space modelling of highenergy X-ray diffraction data Clay Minerals 44 1934 10.1180/claymin.2009.044.1.19.CrossRefGoogle Scholar
Manceau, A., and Drits, V.A., 1993 Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy Clay Minerals 28 165184 10.1180/claymin.1993.028.2.01.CrossRefGoogle Scholar
Manceau, A., and Gates, W.P., 1997 Surface structural model for ferrihydrite Clays and Clay Minerals 45 448460 10.1346/CCMN.1997.0450314.CrossRefGoogle Scholar
Manceau, A., Bonnin, D., Kaiser, P., and Fretigny, C., 1988 Polarized EXAFS of biotite and chlorite Physics and Chemistry of Minerals 16 180185 10.1007/BF00203202.CrossRefGoogle Scholar
Manceau, A., Bonnin, D., Stone, W.E.E., and Sanz, J., 1990 Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS; comparison with NMR results Physics and Chemistry of Minerals 17 363370 10.1007/BF00200132.CrossRefGoogle Scholar
Manceau, A., Lanson, B., Drits, V.A., Chateigner, D., Gates, W.P., Wu, J., Huo, D., and Stucki, J.W., 2000 Oxidationreduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites American Mineralogist 85 133152 10.2138/am-2000-0114.CrossRefGoogle Scholar
Manceau, A., Lanson, B., Schlegel, M.L., Harge, J.C., Musso, M., Eybert-Berard, L., Hazemann, J.-L., Chateigner, D., and Lamble, G.M., 2000 Quantitative Zn speciation in smelter-contaminated soils by EXAFS spectroscopy American Journal of Science 300 289343 10.2475/ajs.300.4.289.CrossRefGoogle Scholar
Montarges-Pelletier, E., Bogenez, S., Pelletier, M., Razafitianamaharavo, A., Ghanbaja, J., Lartiges, B., and Michot, L., 2005 Synthetic allophane-like particles: textural properties Colloids and Surfaces A: Physicochemical and Engineering Aspects 255 110 10.1016/j.colsurfa.2004.11.036.CrossRefGoogle Scholar
Nahon, D., Colin, F., and Tardy, Y., 1982 Formation and distribution of Mg, Fe, Mn-smectites in the first stages of the lateritic weathering of forsterite and tephroite Clay Minerals 17 339348 10.1180/claymin.1982.017.3.06.CrossRefGoogle Scholar
Nesbitt, H.W., and Young, G.M., 1989 Formation and diagenesis of weathering profiles Journal of Geology 97 129147 10.1086/629290.CrossRefGoogle Scholar
Nesbitt, H.W., and Wilson, R.E., 1992 Recent chemical weathering of basalts American Journal of Science 292 740777 10.2475/ajs.292.10.740.CrossRefGoogle Scholar
O’Day, P.A., Rivera, N., Root, R., and Carroll, S.A., 2004 X-ray absorption spectroscopic study of Fe reference compounds for the analysis of natural sediments American Mineralogist 89 572585 10.2138/am-2004-0412.CrossRefGoogle Scholar
Ostergren, J.D., Brown, G.E., Parks, G.A., and Tingle, T.N., 1999 Quantitative speciation of lead in selected mine tailings from Leadville, CO Environmental Science and Technology 33 16271636 10.1021/es980660s.CrossRefGoogle Scholar
Prietzel, J., Thieme, J., Eusterhues, K., and Eichert, D., 2007 Iron speciation in soils and soil aggregates by synchrotron- based X-ray microspectroscopy (XANES, m-XANES) European Journal of Soil Science 58 10271041 10.1111/j.1365-2389.2006.00882.x.CrossRefGoogle Scholar
Rasmussen, C., Dahlgren, R.A., and Southard, R.J., 2009 Basalt weathering and pedogenesis across an environmental gradient in the southern Cascade Range, California, USA Geoderma 154 473485 10.1016/j.geoderma.2009.05.019.CrossRefGoogle Scholar
Roberts, D.R., Scheinost, A.C., and Sparks, D.L., 2002 Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques Environmental Science and Technology 36 17421750 10.1021/es015516c.CrossRefGoogle Scholar
Roth, C.B., Jackson, M.L., and Syers, J.K., 1969 Deferration effect on structural ferrous-ferric iron ratio and CEC of vermiculites and soils Clays and Clay Minerals 17 253264 10.1346/CCMN.1969.0170502.CrossRefGoogle Scholar
Schoeneberger, P.J., Wysocki, D.A., Benham, E.C., and Broderson, W.D., 2002 Field Book for Describing and Sampling Soils, Version 2 Nebraska, USA Natural Resources Conservation Service, Lincoln.Google Scholar
Schwertmann, U., Schulze, D.G., and Murad, E., 1982 Identification of ferrihydrite in soils by dissolution kinetics, differential X-ray diffraction, and Mossbauer spectroscopy Soil Science Society of America Journal 46 869875 10.2136/sssaj1982.03615995004600040040x.CrossRefGoogle Scholar
Schwertmann, U., Friedl, J., and Stanjek, H., 1999 From Fe(III) ions to ferrihydrite and then to hematite Journal of Colloid and Interface Science 209 215223 10.1006/jcis.1998.5899.CrossRefGoogle ScholarPubMed
Schwertmann, U., Friedl, J., and Kyek, A., 2004 Formation and properties of a continuous crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms Clays and Clay Minerals 52 221226 10.1346/CCMN.2004.0520208.CrossRefGoogle Scholar
Shoji, S., Nanzyo, M., and Dahlgren, R., 1993 Volcanic Ash Soils: Genesis, Properties and Utilization New York Elsevier.Google Scholar
Soil Survey Staff, 2003 Keys to Soil Taxonomy 9th edition Washington, D.C. US Government Printing Office.Google Scholar
Soil Survey Staff, 2010 Web Soil Survey USA US Department of Agriculture-Natural Resources Conservation Service.Google Scholar
Stucki, J.W., Golden, D.C., and Roth, C.B., 1984 Effects of reduction and reoxidation of structural iron on the surface charge and dissolution of dioctahedral smectites Clays and Clay Minerals 32 350356 10.1346/CCMN.1984.0320502.CrossRefGoogle Scholar
Toner, B.M., Santelli, C.M., Marcus, M.A., Wirth, R., Chan, C.S., McCollom, T., Bach, W., and Edwards, K.J., 2009 Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge Geochimica et Cosmochimica Acta 73 388403 10.1016/j.gca.2008.09.035.CrossRefGoogle Scholar
Vantelon, D., Montarges-Pelletier, E., Michot, L.J., Pelletier, M., Thomas, F., and Briois, V., 2003 Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study Physics and Chemistry of Minerals 30 4453 10.1007/s00269-002-0286-y.CrossRefGoogle Scholar
Vaughan, K.L., 2008 Pedogenesis at Craters of the Moon National Monument and Preserve, Idaho, USA. PhD dissertation, University of Idaho USA Moscow, Idaho.Google Scholar
Webb, S.M., 2005 Sixpack: A graphical user interface for XAS analysis using IFEFFIT Physica Scripta T115 10111014 10.1238/Physica.Topical.115a01011.CrossRefGoogle Scholar
Whittig, L.D., and Allardice, W.R., 1986 X-ray diffraction techniques Methods of Soil Analysis-Part 1: Physical and Mineralogical Methods 1 1188.Google Scholar
Wilke, M., Farges, F., Petit, P.-E., Brown, G.E. Jr., and Martin, F., 2001 Oxidation state and coordination of Fe in minerals: An Fe K-XANES spectroscopic study American Mineralogist 86 714730 10.2138/am-2001-5-612.CrossRefGoogle Scholar
Wilke, M., Farges, F., Partzsch, G.M., Schmidt, C., and Behrens, H., 2007 Speciation of Fe in silicate glasses and melts by in-situ XANES spectroscopy American Mineralogist 92 4456 10.2138/am.2007.1976.CrossRefGoogle Scholar