Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-26T21:47:45.777Z Has data issue: false hasContentIssue false

XAFS Study of Fe-Substituted Allophane and Imogolite

Published online by Cambridge University Press:  01 January 2024

Leslie L. Baker*
Affiliation:
Division of Soil and Land Resources, University of Idaho, Moscow, ID 83844-3022, USA
Ryan D. Nickerson
Affiliation:
Division of Soil and Land Resources, University of Idaho, Moscow, ID 83844-3022, USA
Daniel G. Strawn
Affiliation:
Division of Soil and Land Resources, University of Idaho, Moscow, ID 83844-3022, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The nano-aluminosilicate mineral allophane is common in soils formed from parent materials containing volcanic ash and often contains Fe. Due to its lack of long-range order, the structure of allophane is still not completely understood. In the present study, Fe K-edge X-ray absorption fine structure (XAFS) was used to examine Fe-containing natural and synthetic allophane and imogolite samples. Results indicated that Fe substitutes for octahedrally coordinated Al in allophane, and that Fe exhibits a clustered distribution within the octahedral sheet. Iron adsorbed on allophane surfaces is characterized by spectral features distinct from those of isomorphically substituted Fe and of ferrihydrite. Fe adsorbed on the allophane surfaces probably exists as small polynuclear complexes exhibiting Fe-Fe edge sharing, similar to poorly crystalline Fe oxyhydroxides. The XAFS spectra of natural allophane and imogolite indicate that the Fe in the minerals is a combination of isomorphically substituted and surface-adsorbed Fe. In the synthetic Fe-substituted allophanes, the Fe XAFS spectra did not vary with the Al:Si ratio. Theoretical fits of the extended XAFS (EXAFS) spectra suggest that local atomic structure around octahedral Fe in allophanes is more similar to Fe in a smectite-like structure than to a published theoretical nanoball structure.

Type
Article
Copyright
Copyright © Clay Minerals Society 2014

References

Ajiboye, B. Akinremi, O.O. and Jürgensen, A., 2007 Experimental validation of quantitative XANES analysis for phosphorus speciation Soil Science Society of America Journal 71 12881291.CrossRefGoogle Scholar
Baker, L.L. and Strawn, D.G., 2012 Fe K-edge XAFS spectra of phyllosilicates of varying crystallinity Physics and Chemistry of Minerals 39 675684.CrossRefGoogle Scholar
Baker, L.L. Strawn, D.G. Vaughan, K.L. and McDaniel, P.A., 2010 XAS study of Fe mineralogy in a chronosequence of soil clays formed in basaltic cinders Clays and Clay Minerals 58 772782.CrossRefGoogle Scholar
Barron, P. Wilson, M. Campbell, A.S. and Frost, R., 1982 Detection of imogolite in soils using solid state 29Si NMR Nature 299 616618.CrossRefGoogle Scholar
Chen, L.X. Liu, T. Thurnauer, M.C. Csencsits, R. and Rajh, T., 2002 Fe2O3 nanoparticle structures investigated by Xray absorption near-edge structure, surface modifications, and model calculations The Journal of Physical Chemistry B 106 85398546.CrossRefGoogle Scholar
Childs, C.W. Parfitt, R.L. and Newman, R.H., 1990 Structural studies of Silica Springs allophane Clay Minerals 25 329341.CrossRefGoogle Scholar
Clark, C. and McBride, M.B., 1984 Chemisorption of Cu (II) and Co (II) on allophane and imogolite Clays and Clay Minerals 32 4, 300311.CrossRefGoogle Scholar
Cradwick, P.D.G. Farmer, V.C. Russell, J.D. Masson, C.R. Wada, K. and Yoshinaga, N., 1972 Imogolite, a hydrated aluminum silicate of tubular structure Nature Physical Science 240 187189.CrossRefGoogle Scholar
Creton, B. Bougeard, D. Smirnov, K.S. Guilment, J. and Poncelet, O.G., 2008 Structural model and computer modeling study of allophane Journal of Physical Chemistry C 112 358364.CrossRefGoogle Scholar
Creton, B. Bougeard, D. Smirnov, K.S. Guilment, J. and Poncelet, O., 2008 Molecular dynamics study of hydrated imogolite. 1. Vibrational dynamics of the nanotube The Journal of Physical Chemistry C 112 1001310020.CrossRefGoogle Scholar
Farmer, V.C., 1997 Conversion of ferruginous allophanes to ferruginous beidellites at 95° under alkaline conditions with alternating oxidation and reduction Clays and Clay Minerals 45 591597.CrossRefGoogle Scholar
Farmer, V.C. Fraser, A.R. and Tait, J.M., 1977 Synthesis of imogolite: a tubular aluminium silicate polymer Journal of the Chemical Society, Chemical Communications 13 462463.CrossRefGoogle Scholar
Farmer, V.C. Fraser, A.R. and Tait, J.M., 1979 Characterization of the chemical structures of natural and synthetic aluminosilicate gels and sols by infrared spectroscopy Geochimica et Cosmochimica Acta 43 14171420.CrossRefGoogle Scholar
Farmer, V.C. Krishnamurti, G. and Huang, P., 1991 Synthetic allophane and layer-silicate formation in SiO2-Al2O3-FeO-Fe2O3-MgO-H2O systems at 23°C and 89°C in a calcareous environment Clays and Clay Minerals 39 561570.CrossRefGoogle Scholar
Galoisy, L. Calas, G. and Arrio, M.A., 2001 High-resolution XANES spectra of iron in minerals and glasses: structural information from the pre-edge region Chemical Geology 174 307319.CrossRefGoogle Scholar
Gates, W.P. Slade, P.G. Manceau, A. and Lanson, B., 2002 Site occupancies by iron in nontronites Clays and Clay Minerals 50 223239.CrossRefGoogle Scholar
Goodman, B. Russell, J. Montez, B. Oldfield, E. and Kirkpatrick, R., 1985 Structural studies of imogolite and allophanes by aluminum-27 and silicon-29 nuclear magnetic resonance spectroscopy Physics and Chemistry of Minerals 12 342346.CrossRefGoogle Scholar
Gustafsson, J.P., 2001 The surface chemistry of imogolite Clays and Clay Minerals 49 7380.CrossRefGoogle Scholar
Henmi, T. and Wada, K., 1976 Morphology and composition of allophane American Mineralogist 61 379390.Google Scholar
Hiradate, S. and Wada, S.-I., 2005 Weathering process of volcanic glass to allophane determined by 27Al and 29Si solid-state NMR Clays and Clay Minerals 53 401408.CrossRefGoogle Scholar
Horikawa, Y. and Soezima, H., 1977 State analysis of iron in allophanic clays II: Iron L-emission band spectra from allophanic clays and hisingerite by the use of an X-ray microanalyzer Clay Science 5 97102.Google Scholar
Ildefonse, P. Kirkpatrick, R.J. Montez, B. Calas, G. Flank, A.M. and Lagarde, P., 1994 27Al MAS NMR and aluminum X-ray absorption near edge structure study of imogolite and allophanes Clays and Clay Minerals 42 276287.CrossRefGoogle Scholar
Iyoda, F. Hayashi, S. Arakawa, S. John, B. Okamoto, M. Hayashi, H. and Yuan, G., 2012 Synthesis and adsorption characteristics of hollow spherical allophane nano-particles Applied Clay Science 56 7783.CrossRefGoogle Scholar
Joussein, E. Petit, S. Churchman, J. Theng, B. Righi, D. and Delvaux, B., 2005 Halloysite clay minerals - a review Clay Minerals 40 383426.CrossRefGoogle Scholar
Kaufhold, S. Kaufhold, A. Jahn, R. Brito, S. Dohrmann, R. Hoffmann, R. Gliemann, H. Weidler, P. and Frechen, M., 2009 A new massive deposit of allophane raw material in Ecuador Clays and Clay Minerals 57 7281.CrossRefGoogle Scholar
Kaufhold, S. Ufer, K. Kaufhold, A. Stucki, J.W. Anastácio, A.S. Jahn, R. and Dohrmann, R., 2010 Quantification of allophane from Ecuador Clays and Clay Minerals 58 707716.CrossRefGoogle Scholar
Kawano, M. and Tomita, K., 2001 Microbial biomineralization in weathered volcanic ash deposit and formation of biogenic minerals by experimental incubation American Mineralogist 86 400410.CrossRefGoogle Scholar
Kitagawa, Y., 1973 Substitution of aluminum by iron in allophane Clay Science 4 151154.Google Scholar
Levard, C. Rose, J. Thill, A. Masion, A. Doelsch, E. Maillet, P. Spalla, O. Olivi, L. Cognigni, A. Ziarelli, F. and Bottero, J.Y., 2010 Formation and growth mechanisms of imogolite-like aluminogermanate nanotubes Chemistry of Materials 22 24662473.CrossRefGoogle Scholar
Levard, C. Masion, A. Rose, J. Doelsch, E. Borschneck, D. Olivi, L. Chaurand, P. Dominici, C. Ziarelli, F. Thill, A. Maillet, P. and Bottero, J.Y., 2011 Synthesis of Geimogolite: influence of the hydrolysis ratio on the structure of the nanotubes Physical Chemistry Chemical Physics 13 1451614522.CrossRefGoogle ScholarPubMed
Levard, C. Doelsch, E. Basile-Doelsch, I. Abidin, Z. Miche, H. Masion, A. Rose, J. Borschneck, D. and Bottero, J.Y., 2012 Structure and distribution of allophanes, imogolite and proto-imogolite in volcanic soils Geoderma 183–184 100108.CrossRefGoogle Scholar
Li, L. Xia, Y. Zhao, M. Song, C. Li, J. and Liu, X., 2008 The electronic structure of a single-walled aluminosilicate nanotube Nanotechnology 19 175702.CrossRefGoogle ScholarPubMed
MacKenzie, K.J.D. and Cardile, C.M., 1988 The structure and thermal reactions of natural iron-containing allophanes studied by 57-Fe Mössbauer spectroscopy Thermochimica Acta 130 259267.CrossRefGoogle Scholar
MacKenzie, K. Bowden, M. and Meinhold, R., 1991 The structure and thermal transformations of allophanes studied by 29Si and 27Al high resolution solid-state NMR Clays and Clay Minerals 39 337346.CrossRefGoogle Scholar
Manceau, A. Bonnin, D. Kaiser, P. and Frétigny, C., 1988 Polarized EXAFS of biotite and chlorite Physics and Chemistry of Minerals 16 180185.CrossRefGoogle Scholar
Manceau, A. Bonnin, D. Stone, W.E.E. and Sanz, J., 1990 Distribution of Fe in the octahedral sheet of trioctahedral micas by polarized EXAFS; comparison with NMR results Physics and Chemistry of Minerals 17 363370.CrossRefGoogle Scholar
Manceau, A. Chateigner, D. and Gates, W.P., 1998 Polarized EXAFS, distance-valence least-squares modeling (DVLS), and quantitative texture analysis approaches to the structural refinement of Garfield nontronite Physics and Chemistry of Minerals 25 347365.CrossRefGoogle Scholar
Manceau, A. Lanson, B. Drits, V.A. Chateigner, D. Gates, W.P. Wu, J. Huo, D. and Stucki, J.W., 2000 Oxidationreduction mechanism of iron in dioctahedral smectites: I. Crystal chemistry of oxidized reference nontronites American Mineralogist 85 133152.CrossRefGoogle Scholar
McBride, M.B. Farmer, V.C. Russell, J.D. Tait, J.M. and Goodman, B.A., 1984 Iron substitution in aluminosilicate sols synthesized at low pH Clay Minerals 19 18.CrossRefGoogle Scholar
Ming, D. W. Mittlefehldt, D. W. Morris, R. V. Golden, D. C. Gellert, R. Yen, A. Clark, B. C. Squyres, S. W. Farrand, W. H. Ruff, S. W. Arvidson, R. E. Klingelhöfer, G. McSween, H. Y. Rodionov, D. S. Schröder, C. de Souza, P. A. and Wang, A., 2006 Geochemical and mineralogical indicators for aqueous processes in the Columbia Hills of Gusev crater, Mars Journal of Geophysical Research: Planets 111 E2 n/a-n/a.CrossRefGoogle Scholar
Miyauchi, N. and Aomine, S., 1966 Mineralogy of gel-like substance in the pumice bed in Kanuma and Kitakami Districts Soil Science and Plant Nutrition 12 1922.CrossRefGoogle Scholar
Montarges-Pelletier, E. Bogenez, S. Pelletier, M. Razafitianamaharavo, A. Ghanbaja, J. Lartiges, B. and Michot, L., 2005 Synthetic allophane-like particles: textural properties Colloids and Surfaces A: Physicochemical and Engineering Aspects 255 110.CrossRefGoogle Scholar
Newville, M., 2001 IFEFFIT: interactive XAFS analysis and FEFF fitting Journal of Synchrotron Radiation 8 322324.CrossRefGoogle ScholarPubMed
O’Day, P.A. Rehr, J.J. Zabinsky, S.I. Brown, G.E. Jr., 1994 Extended X-ray absorption fine structure (EXAFS) analysis of disorder and multiple-scattering in complex crystalline solids Journal of the American Chemical Society 116 29382949.CrossRefGoogle Scholar
Ohashi, F. Wada, S.-I. Suzuki, M. Maeda, M. and Tomura, S., 2002 Synthetic allophane from high-concentration solutions: nanoengineering of the porous solid Clay Minerals 37 451456.CrossRefGoogle Scholar
Ookawa, M. Inoue, Y. Watanabe, M. Suzuki, M. and Yamaguchi, T., 2006 Synthesis and characterization of Fe containing imogolite Clay Science 12 Suppl.2 280284.Google Scholar
Ossaka, J. Iwai, S.-i. Kasai, M. Shirai, T. and Hamada, S., 1971 Coexistence states of iron in synthesized iron-bearing allophane (Al2O3-SiO2-Fe2-H2O system) Bulletin of the Chemical Society of Japan 44 716718.CrossRefGoogle Scholar
Ostergren, J.D. Brown, G.E. Parks, G.A. and Tingle, T.N., 1999 Quantitative speciation of lead in selected mine tailings from Leadville, CO Environmental Science & Technology 33 16271636.CrossRefGoogle Scholar
Parfitt, R.L., 2009 Allophane and imogolite: role in soil biogeochemical processes Clay Minerals 44 135155.CrossRefGoogle Scholar
Parfitt, R.L. and Henmi, T., 1980 Structure of some allophanes from New Zealand Clays and Clay Minerals 28 285294.CrossRefGoogle Scholar
Parfitt, R.L. Furkert, R.J. and Henmi, T., 1980 Identification and structure of two types of allophane from volcanic ash soils and tephra Clays and Clay Minerals 28 328334.CrossRefGoogle Scholar
Pokrovski, G.S. Schott, J. Farges, F. and Hazemann, J.-L., 2003 Iron (III)-silica interactions in aqueous solution: insights from X-ray absorption fine structure spectroscopy Geochimica et Cosmochimica Acta 67 35593573.CrossRefGoogle Scholar
Rampe, E. Kraft, M. Sharp, T. Golden, D. Ming, D. and Christensen, P., 2012 Allophane detection on Mars with Thermal Emission Spectrometer data and implications for regional-scale chemical weathering processes Geology G33215.33211.CrossRefGoogle Scholar
Ravel, B., 2001 ATOMS: crystallography for the X-ray absorption spectroscopist Journal of Synchrotron Radiation 8 314316.CrossRefGoogle ScholarPubMed
Ravel, B. and Newville, M., 2005 ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT Journal of Synchrotron Radiation 12 537541.CrossRefGoogle ScholarPubMed
Roberts, D.R. Scheinost, A.C. and Sparks, D.L., 2002 Zinc speciation in a smelter-contaminated soil profile using bulk and microspectroscopic techniques Environmental Science & Technology 36 17421750.CrossRefGoogle Scholar
Schwertmann, U. Friedl, J. and Kyek, A., 2004 Formation and properties of a continuous crystallinity series of synthetic ferrihydrites (2- to 6-line) and their relation to FeOOH forms Clays and Clay Minerals 52 221226.CrossRefGoogle Scholar
Shimizu, H. Watanabe, T. Henmi, T. Masuda, A. and Saito, H., 1988 Studies on allophane and imogolite by high-resolution solid-state 29Si-and 27Al-NMR and ESR Geochemical Journal 22 2331.CrossRefGoogle Scholar
Tazaki, K. Morikawa, T. Watanabe, H. Asada, R. and Okuno, M., 2006 Microbial formation of imogolite Clay Science 12 Supplement2 245254.Google Scholar
Toner, B.M. Santelli, C.M. Marcus, M.A. Wirth, R. Chan, C.S. McCollom, T. Bach, W. and Edwards, K.J., 2009 Biogenic iron oxyhydroxide formation at mid-ocean ridge hydrothermal vents: Juan de Fuca Ridge Geochimica et Cosmochimica Acta 73 388403.CrossRefGoogle Scholar
Tsipursky, S.I. and Drits, V.A., 1984 The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction Clay Minerals 19 177193.CrossRefGoogle Scholar
Vantelon, D. Montarges-Pelletier, E. Michot, L.J. Pelletier, M. Thomas, F. and Briois, V., 2003 Iron distribution in the octahedral sheet of dioctahedral smectites. An Fe K-edge X-ray absorption spectroscopy study Physics and Chemistry of Minerals 30 4453.CrossRefGoogle Scholar
Waychunas, G.A. Apted, M.J. and Brown, G.E., 1983 X-ray K-edge absorption spectra of Fe minerals and model compounds: Near-edge structure Physics and Chemistry of Minerals 10 19.CrossRefGoogle Scholar
Webb, S.M., 2005 Sixpack: A graphical user interface for XAS analysis using IFEFFIT Physica Scripta T115 10111014.CrossRefGoogle Scholar
Westre, T.E. Kennepohl, P. DeWitt, J.G. Hedman, B. Hodgson, K.O. and Solomon, E.I., 1997 A multiplet analysis of Fe K-edge 1s → 3d pre-edge features of iron complexes Journal of the American Chemical Society 119 62976314.CrossRefGoogle Scholar
Yucelen, G.I. Choudhury, R.P. Vyalikh, A. Scheler, U. Beckham, H.W. and Nair, S., 2011 Formation of single-walled aluminosilicate nanotubes from molecular precursors and curved nanoscale intermediates Journal of the American Chemical Society 133 53975412.CrossRefGoogle ScholarPubMed