Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T10:34:17.018Z Has data issue: false hasContentIssue false

Weathering sequences of rock-forming minerals in a serpentinite: Influence of microsystems on clay mineralogy

Published online by Cambridge University Press:  01 January 2024

J. Caillaud*
Affiliation:
FRE 2816 CNRS, ELICO, Université du Littoral Côte d’Opale, MREN, 32 Avenue Foch, 62930 Wimereux, France
D. Proust
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 av. du recteur Pineau, 86022 Poitiers cedex, France
D. Righi
Affiliation:
UMR 6532 CNRS, HydrASA, Faculté des Sciences, 40 av. du recteur Pineau, 86022 Poitiers cedex, France
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Under closed geochemical conditions, the weathering of a serpentinite rock composed of serpentine (70–85%) and magnesian chlorite (10–15%) associated with magnetite and chromite leads to the complete replacement of serpentine and chlorite by 2:1 layer silicates and produces new Fe oxides. The serpentine minerals crystallize under different habits issued from the serpentinization processes: mesh and hourglass pseudomorphic textures were formed from olivine, and thin-bladed pseudomorphic textures from pyroxene and amphibole crystals. Serpentine veins crosscut the whole rock with locally non-pseudomorphic interpenetrating and interlocking serpentines.

Specific weathering microsystem habits with specific clay mineral crystallizations originate from these different habits: a poorly aluminous saponite in thin-bladed textures, two Fe-rich montmorillonites in mesh and hourglass (MH) textures, and in veins (V) which differentiate on Al, Mg and Fe contents. Magnesian chlorites, isolated from serpentine by hand-picking under a stereomicroscope, are found to weather to trioctahedral vermiculite. Magnetite and chromite extracted from the bulk samples are replaced by newly formed Fe oxides, maghemite, goethite and hematite, which give way to specific Fe accumulation habits in the regolith zone of the weathering profile.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Alexander, E.B. Adamson, C. Zinke, P.J. and Graham, R.C., (1989) Soils and conifer productivity on serpentinized peridotite of the Trinity ophiolite, California Soil Sciences 148 412423 10.1097/00010694-198912000-00003.CrossRefGoogle Scholar
Aumento, F. (1970) Serpentine mineralogy of ultrabasic intrusions in Canada and the Mid-Atlantic Ridge. Geological Survey of Canada Paper, 69-53, 51 pp.Google Scholar
Bailey, S.W., (1969) Polytypism of trioctahedral 1:1 layer silicates Clays and Clay Minerals 17 355371 10.1346/CCMN.1969.0170605.CrossRefGoogle Scholar
Bailey, S.W., Brindley, G.W. and Brown, G., (1980) Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 123.Google Scholar
Banfield, J.F. and Barker, W.W., (1994) Direct observation of reactant-product interfaces formed in natural weathering of exsolved defective amphibole to smectite: evidence of episodic, isovolumetric reactions involving structural inheritance Geochimica et Cosmochimica Acta 58 14191429 10.1016/0016-7037(94)90546-0.CrossRefGoogle Scholar
Barnes, I. and O’Neil, J.R., (1969) The relationship between fluids in some fresh Alpine-type ultramafics and possible modern serpentinization, Western U.S Bulletin of the Geological Society of America 80 19471960 10.1130/0016-7606(1969)80[1947:TRBFIS]2.0.CO;2.CrossRefGoogle Scholar
Barnes, I. Rapp, J.B. and O’Neil, J.R., (1972) Metamorphic assemblages and the direction of flow of metamorphic fluids in four instances of serpentinization Contributions to Mineralogy and Petrology 35 263276 10.1007/BF00371220.CrossRefGoogle Scholar
Baronnet, A., (1997) Silicate microstructures at the subatomique scale Compte rendu de l’Académie des Sciences de Paris 324 157172 série IIa.Google Scholar
Bates, T.F., (1951) Morphology of layer lattice silicates Journal of the Scientific Laboratories of Denison University 42 8391.Google Scholar
Bates, T.F., (1959) Morphology and crystal chemistry of 1:1 layer lattice silicates American Mineralogist 44 78114.Google Scholar
Berre, A. Ducloux, J. and Dupuis, J., (1974) Pédogénèse sur roches ultrabasiques en climat tempéré humide: les sols sur serpentinites du Limousin occidental Science du sol. Bulletin de l’AFES 3 135146.Google Scholar
Bonifacio, E. Zanini, E. Boero, V. and Franchini-Angela, M., (1996) Pedogenesis in a soil catena on serpentinite in northwestern Italy Geoderma 75 3351 10.1016/S0016-7061(96)00076-6.CrossRefGoogle Scholar
Boudier, F., (1971) Minéraux serpentineux extraits de péridotites serpentinisées des Alpes Occidentales Contributions to Mineralogy and Petrology 33 331345 10.1007/BF00382572.CrossRefGoogle Scholar
Bulmer, C.E. and Lavkulich, L.M., (1994) Pedogenic and geochemical processes of ultramafic soils along a climatic gradient in southwestern British Columbia Canadian Journal of Soil Science 74 165177 10.4141/cjss94-024.CrossRefGoogle Scholar
Caillaud, J. Proust, D. Righi, D. and Martin, F., (2004) Iron-rich clays in a weathering profile developed from serpentinite Clays and Clay Minerals 52 779791 10.1346/CCMN.2004.05206013.CrossRefGoogle Scholar
Chernosky, J.V. (1973) The stability of chrysotile, Mg3Si2O5(OH)4, and the free energy of formation of talc, Mg3Si4O10(OH)2. Geological Society of America Annual Meeting, Program and Abstracts.Google Scholar
Coleman, R.G. (1966) New Zealand serpentinites and associated metasomatic rocks. New Zealand Geological Survey Bulletin N.S., 76.Google Scholar
Coleman, R.G., (1971) Petrologic and geophysical nature of serpentinites Bulletin of the Geological Society of America 82 897918 10.1130/0016-7606(1971)82[897:PAGNOS]2.0.CO;2.CrossRefGoogle Scholar
Coleman, R.G. and Keith, T.E., (1971) A chemical study of serpentinization — Burro Mountain, California Journal of Petrology 12 311328 10.1093/petrology/12.2.311.CrossRefGoogle Scholar
Coombe, D.E., Frost, L.C., Le Bas, M. and Watters, W. (1956) The nature of the soils over the Cornish serpentine. Journal of Ecology, 605615.CrossRefGoogle Scholar
Ducloux, J. Meunier, A. and Velde, B., (1976) Smectite, chlorite, and a regular interlayered chlorite-vermiculite in soils developed on a small serpentinite body, Massif Central, France Clay Minerals 11 121135 10.1180/claymin.1976.011.2.04.CrossRefGoogle Scholar
Dungan, M.A., (1974) The origin, emplacement and meta-morphism of the sultan Mafic-Ultramafic Complex, Northern Cascades, Snohomish County, Washington Seattle, Washington University of Washington PhD dissertation.Google Scholar
Fontanaud, A. (1982) Les faciès d’altération supergène des roches ultrabasiques. Etude de deux massifs de lherzolite (Pyrénées, France). Thèse 3ème cycle, Université de Poitiers, 103 pp.Google Scholar
Graham, R.C. Diallo, M.M. and Lund, L.J., (1990) Soils and mineral weathering on phyllite colluvium and serpentinite in northwestern California Soil Science Society of America Journal 54 16821690 10.2136/sssaj1990.03615995005400060030x.CrossRefGoogle Scholar
Green, D.H., (1961) Ultramafic breccias from the Musa Valley, eastern Papua Geological Magazine 98 126 10.1017/S0016756800000030.CrossRefGoogle Scholar
Hochella, M.F. Banfield, J.F., White, A.F. and Brantley, S.L., (1996) Chemical weathering of silicates in nature: a microscopic perspective with theoretical considerations Chemical Weathering Rates in Silicate Minerals Washington, D.C Mineralogical Society of America 353406.Google Scholar
Hochstetter, R., (1965) Zur Kenntnist der Serpentinmineralien Germany Universität des Saarlandes PhD thesis.Google Scholar
Hostetier, P.B. Coleman, R.G. Mumpton, F.A. and Evans, B.W., (1966) Brucite in Alpine serpentinites American Mineralogist 51 7598.Google Scholar
Ildefonse, P. (1978) Mécanismes de l’altération d’une roche gabbroïque du Massif du Pallet (Loire-Atlantique). Thèse 3ème cycle, Université de Poitiers, 142 pp.Google Scholar
Istok, J.D. and Harward, M.E., (1982) Influence of soil moisture on smectite formation in soils derived from serpentinite Soil Science Society of America Journal 46 11061108 10.2136/sssaj1982.03615995004600050046x.CrossRefGoogle Scholar
Johannes, W., (1968) Experimental investigation of the reaction forsterite + water = serpentine + brucite Contributions to Mineralogy and Petrotrology 19 309315 10.1007/BF00389413.CrossRefGoogle Scholar
Johannes, W. and Metz, P., (1968) Experimentelle Bestimmung von Gleichge wilchlsbeziehungen im System MgO—CO2—H2O Neues Jahrbuch für Mineralogie Monatshefte 16 1526.Google Scholar
Lee, B.D. Graham, R.C. Laurent, T.E. Amrhein, C. and Creasy, R.M., (2001) Spatial distributions of soil chemical conditions in a serpentinic wetland and surrounding landscape Soil Science Society of America Journal 65 11831196 10.2136/sssaj2001.6541183x.CrossRefGoogle Scholar
Lee, B.D. Sears, S.K. Graham, R.C. Amrhein, C. and Vali, H., (2003) Secondary mineral genesis from chlorite and serpentine in an ultramafic soil toposequence Soil Science Society of America Journal 67 13091317 10.2136/sssaj2003.1309.CrossRefGoogle Scholar
Meunier, A., (1977) Les mécanismes d’altération des granites et le rôle des microsystèmes. Etude des arènes du massif granitique de Parthenay (Deux-Sèvres) Université de Poitiers, France Thèse Sciences 248 pp.Google Scholar
Moody, J.B., (1974) Serpentinization of iron-bearing olivines: an experimental study Montreal, Canada McGill University PhD dissertation.Google Scholar
Moody, J.B., (1976) An experimental study on the serpentinization of iron-bearing olivines The Canadian Mineralogist 14 462478.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Page, N.J., (1967) Serpentinization at Burro Mountain, California Contributions to Mineralogy and Petrology 14 321342 10.1007/BF00373811.CrossRefGoogle Scholar
Page, N.J., (1968) Serpentinization in a sheared serpentinite lens, Tiburon, Peninsula, California US Geological Survey Professional Paper 600-B 2128.Google Scholar
Proust, D., (1983) Mécanismes d’altération supergène des roches ultrabasiques Etude des arènes d’orthoamphibolite du Limousin et de glaucophanite de l’île de Groix (Morbihan) Université de Poitiers, France Thèse Sciences 197 pp.Google Scholar
Rabenhorst, M.C. Foss, J.E. and Fanning, D.S., (1982) Genesis of Maryland soils formed from serpentinite Soil Science Society of America Journal 46 607616 10.2136/sssaj1982.03615995004600030032x.CrossRefGoogle Scholar
Roy, D.M. and Roy, R., (1954) An experimental study of the formation and properties of synthetic serpentines and related layer silicate minerals American Mineralogist 39 959975.Google Scholar
Schwertmann, U. Taylor, R.M., Dixon, J.B. and Weed, S.B., (1977) Iron oxides Minerals in Soil Environments Madison, Wisconsin, USA Soil Science Society of America. 145176.Google Scholar
Shirozu, H., Sudo, T. and Shimoda, S., (1978) Chlorite minerals Clays and Clay Minerals of Japan Amsterdam Elsevier 243264 10.1016/S0070-4571(08)70688-5.CrossRefGoogle Scholar
Springer, R.K., (1974) Contact metamorphosed ultramafic rocks in the Western Sierra Nevada foothills, California Journal of Petrology 15 160195 10.1093/petrology/15.1.160.CrossRefGoogle Scholar
Wenner, D.B. and Taylor, H.P., (1971) Temperatures of serpentinization of ultramafic rocks based on O18/O16 fractionation between co-existing serpentine and magnetite Contributions to Mineralogy and Petrology 32 165185 10.1007/BF00643332.CrossRefGoogle Scholar
Wenner, D.B. and Taylor, H.P., (1974) D/H and O18/O16 studies of serpentinization of ultramafic rocks Geochimica et Cosmochimica Acta 38 12551286 10.1016/0016-7037(74)90120-3.CrossRefGoogle Scholar
Whittaker, E.J.W. and Wicks, F.J., (1970) Chemical differences among the serpentine ‘polymorphs’: a discussion American Mineralogist 55 10251047.Google Scholar
Whittaker, E.J.W. and Zussman, J., (1956) The characterization of serpentine minerals by X-ray diffraction Mineralogical Magazine 31 107126 10.1180/minmag.1956.031.233.01.CrossRefGoogle Scholar
Wicks, F.J., (1969) X-ray and optical studies of serpentine minerals Oxford, England Oxford University PhD dissertation.Google Scholar
Wicks, F.J. and Whittaker, E.J.W., (1975) A reappraisal of the structures of the serpentine minerals The Canadian Mineralogist 13 227243.Google Scholar
Wicks, F.J. and Whittaker, E.J.W., (1977) Serpentine textures and serpentinization The Canadian Mineralogist 15 459488.Google Scholar
Wildman, W.E. Jackson, M.L. and Whittig, L.D., (1968) Iron-rich montmorillonite formation in soils derived from serpentinite Soil Science Society of America Proceedings 32 787794 10.2136/sssaj1968.03615995003200060025x.CrossRefGoogle Scholar