Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-20T10:45:42.216Z Has data issue: false hasContentIssue false

Weathering of Soils in Alpine Areas as Influenced by Climate and Parent Material

Published online by Cambridge University Press:  01 January 2024

Markus Egli*
Affiliation:
Department of Geography, University of Zürich, Winterthurerstrasse 190, 8057 Zürich, Switzerland
Aldo Mirabella
Affiliation:
Istituto Sperimentale per lo Studio e la Difesa del Suolo, Piazza D’Azeglio 30, 50121 Firenze, Italy
Alessandro Mancabelli
Affiliation:
Istituto Tecnico Agrario, Via Edmondo Mach 1, 38010 S. Michele all’Adige-Trento, Italy
Giacomo Sartori
Affiliation:
Museo Tridentino di Scienze Naturali, Via Calepina 14, 38100 Trento, Italy
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Two soil sequences in northern Italy (Val di Fiemme and Val Genova) along an elevational gradient ranging from moderate (950 m a.s.l.) to high alpine (2440 m a.s.l.) climate zones were investigated with respect to element losses (Ca, Mg, K, Na, Fe, Al, Si, Mn) and development of clay minerals. Soils formed on paleo-rhyolitic parent material in Val di Fiemme and on tonalitic-granodioritic morainic material in Val Genova. All the soils have a similar age (∼12,000 y) and have been classified as Podzols. The soils are very acid and the pH values tend to increase with decreasing altitude. Podzolization processes were most intense in the range of the subalpine forest up to the timberline (1400–1900 m above sea-level (a.s.l.)). Element leaching was greatest in this range and weathering rates decrease with both higher and lower altitudes. Due to the different lithologies and precipitations between the two valleys, the total amount of chemical weathering was slightly different, although the same trends with altitude could be observed. Imogolite-type materials (ITM) are generally of minor importance. Greater concentrations of ITM were observed in the Bhs or Bs horizons of the Episkeleti-Entic Podzols at the lower altitudes. Iron eluviation was similar in all Podzols while larger amounts of eluviated Al were detected in Val Genova. The pattern of smectite distribution along the climosequences had similarities to the trend of cation losses. The largest amount of low-charge expandable minerals seems to exist in the range of the subalpine forest up to the timberline. The development of clay minerals with a smaller layer charge was more advanced in Podzols on rhyolitic material where smectite could be detected in the Bhs and Bs horizon. Parent material influenced chemical weathering in the soils along the two climosequences and essentially determined the degree of weathering and the formation of clay minerals.

Type
Research Article
Copyright
Copyright © 2004, The Clay Minerals Society

References

Bain, D.C. Mellor, A. Wilson, M.J. and Duthie, D.M.L., (1994) Chemical and mineralogical weathering rates and processes in an upland granitic till catchment in Scotland Water, Air, and Soil Pollution 73 1127 10.1007/BF00477973.Google Scholar
Bain, D.C. Roe, M.J. Duthie, D.M.L. and Thomson, C.M., (2001) The influence of mineralogy on weathering rates and processes in an acid-sensitive granitic catchment Applied Geochemistry 16 931937 10.1016/S0883-2927(00)00071-8.Google Scholar
Barnhisel, R.I. Bertsch, P.M., Dixon, J.B. and Weed, S.B., (1989) Chlorites and hydroxy-interlayered vermiculite and smectite Minerals in Soil Environments 2nd Madison, Wisconsin Soil Science Society of America 729788.Google Scholar
Baron, J., (1992) Biogeochemistry of a Subalpine Ecosystem New York Springer-Verlag 10.1007/978-1-4612-2788-5.Google Scholar
Berner, R.A. and Lasaga, A.C., (1989) Modeling the Geochemical Carbon Cycle Scientific American 260 7481 10.1038/scientificamerican0389-74.Google Scholar
Bockheim, J.G. Munroe, J.S. Douglass, D. and Koerner, D., (2000) Soil development along an elevational gradient in the southeastern Uinta Mountains, Utah, USA Catena 39 169185 10.1016/S0341-8162(99)00091-0.Google Scholar
Brahmer, G. Feger, K.-H. and Brechtel, H., (1989) Hydrochemische Bilanzen kleiner bewaldeter Einzugsgebiete des Südschwarzwaldes Immissionsbelastung des Waldes und seiner Böden — Gefahr für die Gewässer? Bonn, Germany DVWK Mitteilungen 17 205211.Google Scholar
Brimhall, G.H. and Dietrich, W.E., (1987) Constitutive mass balance relations between chemical composition, volume, density, porosity, and strain in metasomatic hydrochemical systems: Results on weathering and pedogenesis Geochimica et Cosmochimica Acta 51 567587 10.1016/0016-7037(87)90070-6.Google Scholar
Carnicelli, S. Mirabella, A. Cecchini, G. and Sanesi, G., (1997) Weathering of chlorite to a low-charge expandable mineral in a spodosol on the Apennine mountains, Italy Clays and Clay Minerals 45 2841 10.1346/CCMN.1997.0450104.CrossRefGoogle Scholar
Castaldini, M. Egli, M. Mirabella, A. Fabiani, A. Santomassimo, F. and Miclaus, N., (2002) Influence of climate on soil development and microbial community in Trentino mountains — Italy BGS Bulletin 25 5560.Google Scholar
Certini, G. Ugolini, F.C. Corti, G. and Agnelli, A., (1998) Early stages of podzolization under Corsican pine (Pinus nigra Arn. ssp. larico) Geoderma 83 103125 10.1016/S0016-7061(97)00137-7.Google Scholar
Chadwick, O.A. Brimhall, G.H. and Hendricks, D.M., (1990) From a black to a gray box — a mass balance interpretation of pedogenesis Geomorphology 3 369390 10.1016/0169-555X(90)90012-F.Google Scholar
Cornu, S. Lucas, Y. Lebon, E. Ambrosi, J.P. Luziao, F. Rouiller, J. Bonnay, M. and Neal, C., (1999) Evidence of titanium moblity in soil profiles, Manaus, central Amazonia Geoderma 91 281295 10.1016/S0016-7061(99)00007-5.Google Scholar
Costantini, E. Mancabelli, A. Sartori, G. Wolf, U. Falcetti, M. De Ros, G. Tonon, C. Mescalchin, E. and Pinzauti, S., (1995) Per le vigne e i boschi del Trentino. Lo studio dei suoli applicato alla zona viticola e alla gestione degli ecosistemi forestali San Michele all’Adige Guida all’escursione, Associazione Italiana Pedologi.Google Scholar
Dahlgren, R. Shoji, S. Nanzyo, M., Shoji, S. Nanzyo, M. and Dahlgren, R., (1993) Mineralogical characteristics of volcanic ash soils Ash Soils, Genesis, Properties and Utilization Amsterdam, The Netherlands Elsevier Science Publishers B.V. 101143 10.1016/S0166-2481(08)70266-6.Google Scholar
Egli, M. and Fitze, P., (2000) Formulation of pedologic mass balance based on immobile elements: a revision Soil Science 165 437443 10.1097/00010694-200005000-00008.Google Scholar
Egli, M. Mirabella, A. and Fitze, P., (2001) Clay mineral formation in soils of two different chronosequences in the Swiss Alps Geoderma 104 145175 10.1016/S0016-7061(01)00079-9.Google Scholar
Egli, M. Fitze, P. and Mirabella, A., (2001) Weathering and evolution of soils formed on granitic, glacial deposits: results from chronosequences of Swiss alpine environments Catena 45 1947 10.1016/S0341-8162(01)00138-2.Google Scholar
Egli, M. Mirabella, A. Sartori, G. and Fitze, P., (2003) Weathering rates as a function of climate: results from a climosequence of the Val Genova (Trentino, Italian Alps) Geoderma 111 99121 10.1016/S0016-7061(02)00256-2.Google Scholar
Fitze, P. Kägi, B. and Egli, M., (2000) Laboranleitung zur Untersuchung von Boden und Wasser Zürich, Switzerland Geographisches Institut der Universität Zürich.Google Scholar
Gillot, F. Righi, D. Räisänen, M.L., Kodama, H. Mermut, H.R. and Torrace, J.K., (1999) Formation of smectites and their alteration in two chronosequences of podzols in Finland Clays for our Future Ottawa, Canada ICC97 725731.Google Scholar
Gustafsson, J.P. Bhattacharya, P. Bain, D.C. Fraser, A.R. and McHardy, W.J., (1995) Podzolisation mechanisms and the synthesis of imogolite in northern Scandinavia Geoderma 66 167184 10.1016/0016-7061(95)00005-9.Google Scholar
Hitz, C. Egli, M. and Fitze, P., (2002) Determination of the sampling volume for representative analysis of alpine soils Zeitschrift für Pflanzenernährung und Bodenkunde 165 326331 10.1002/1522-2624(200206)165:3<326::AID-JPLN326>3.0.CO;2-A.Google Scholar
Jenny, H., (1980) The Soil Resource New York Springer 10.1007/978-1-4612-6112-4.Google Scholar
Lanson, B., (1997) Decomposition of experimental X-ray diffraction patterns (profile fitting): a convenient way to study clay minerals Clays and Clay Minerals 45 132146 10.1346/CCMN.1997.0450202.Google Scholar
Likens, G.E. Bormann, F.H. Pierce, R.S. Eaton, J.S. and Johnson, N.M., (1977) Biogeochemistry of a Forested Ecosystem New York Springer-Verlag 10.1007/978-1-4615-9993-7.Google Scholar
Lumsdon, D.G. and Farmer, V.C., (1997) Solubility of a protoimogolite sol in oxalate solutions European Journal of Soil Science 48 115120 10.1111/j.1365-2389.1997.tb00190.x.Google Scholar
Mahaney, W.C. and Mahaney, W.C., (1978) Late-Quaternary stratigraphy and soils in the Wind River Mountains, western Wyoming Quaternary Soils Norwich, UK Geo-Abstracts 223264.Google Scholar
McKeague, J.A. Brydon, J.E. and Miles, N.M., (1971) Differentiation of forms of extractable iron and aluminium in soils Soil Science Society of America Proceedings 35 3338 10.2136/sssaj1971.03615995003500010016x.Google Scholar
Mirabella, A. and Sartori, G., (1998) The effect of climate on the mineralogical properties of soils from the Val Genova Valley (Trentino, Italy) Fresenius Environmental Bulletin 7 478483.Google Scholar
Mirabella, A. Egli, M. Carnicelli, S. and Sartori, G., (2002) Influence of parent material on clay minerals formation in podzols of Trentino, Italy Clay Minerals 37 699707 10.1180/0009855023740071.Google Scholar
Moore, D.M. and Reynolds, R.C., (1997) X-ray diffraction and the Identification and Analysis of Clay Minerals 2nd New York Oxford University Press.Google Scholar
Nieuwenhuyse, A. and van Breemen, N., (1997) Quantitative aspects of weathering and neoformation in selected Costa Rican volcanic soils Journal of the Soil Science Society of America 61 14501458 10.2136/sssaj1997.03615995006100050024x.Google Scholar
Olis, A.C. Malla, P.B. and Douglas, L.A., (1990) The rapid estimation of the layer charges of 2: 1 expanding clays from a single alkylammonium ion expansion Clay Minerals 25 3950 10.1180/claymin.1990.025.1.05.Google Scholar
Olsson, M.T. and Melkerud, P.-A., (2000) Weathering in three podzolized pedons on glacial deposits in northern Sweden and central Finland Geoderma 94 149161 10.1016/S0016-7061(99)00081-6.Google Scholar
Parfitt, R.L. and Henmi, T., (1982) Comparison of an oxalate-extraction method and an infrared spectroscopic method for determining allophane in soil clays Soil Science and Plant Nutrition 28 183190 10.1080/00380768.1982.10432435.Google Scholar
Pfaffenberger, C., Einsele, G. and Ricken, W., (1993) Stoffaustrag in einem BuntsandsteinGebiet (Finsterboden) Eintiefungsgeschichte und Stoffaustrag im Wutachgebiet Reihe C 15, Tübingen, Germany Tübinger geowissenschafliche Arbeiten 157161 (SW-Deutschland).Google Scholar
Righi, D. and Meunier, A., (1991) Characterization and genetic interpretation of clays in acid brown soil (Dystrochrept) developed in a granitic saprolite Clays and Clay Minerals 39 519530 10.1346/CCMN.1991.0390507.Google Scholar
Righi, D. Petit, S. and Bouchet, A., (1993) Characterization of hydroxy-interlayered vermiculite and illite/smectite inter-stratified minerals from the weathering of chlorite in a Cryorthod Clays and Clay Minerals 41 484495 10.1346/CCMN.1993.0410409.Google Scholar
Righi, D. Huber, K. and Keller, C., (1999) Clay formation and podzol development from postglacial moraines in Switzerland Clay Minerals 34 319332 10.1180/000985599546253.Google Scholar
Ross, G.J. and Theng, B.K.G., (1980) The mineralogy of Spodosols Soils with Variable Charge Lower Hutt, New Zealand Department of Scientific and Industrial Research 127143.Google Scholar
Schiedeck, T., Einsele, G. and Ricken, W., (1993) Stoffaustrag in einem bewaldeten Granit-Einzugsgebiet (Wittenbach) Eintiefungsgeschichte und Stoffaustrag im Wutachgebiet Reihe C 15, Tübingen, Germany Tübinger geowissenschafliche Arbeiten 149156 (SW Deutschland).Google Scholar
Servizio Idrografico, Precipitazione medie mensili ed annue per il Trentino 1921–1950 (1959) Rome Istituto Poligrafico dello Stato.Google Scholar
Stumm, W. and Morgan, J.J., (1996) Aquatic Chemistry 3rd New York John Wiley & Sons, Inc..Google Scholar
Stumm, W. Wieland, E. and Stumm, W., (1990) Dissolution of oxide and silicate minerals: rates depend on surface speciation Aquatic Chemical Kinetics: Reaction Rates of Processes in Natural Waters New York Wiley-Interscience 367398.Google Scholar
White, A.F. and Blum, A.E., (1995) Effects of climate on chemical weathering in watersheds Geochimica et Cosmochimica Acta 59 17291747 10.1016/0016-7037(95)00078-E.CrossRefGoogle Scholar
Whittaker, R.H. Buol, S.W. Niering, W.A. and Havens, Y.H., (1968) A soil and vegetation pattern in the Santa Catalina Mountains, Arizona Soil Science 105 440450 10.1097/00010694-196806000-00010.Google Scholar
Wilson, M.J., (1999) The origin and formation of clay minerals in soils: past, present and future perspectives Clay Minerals 34 725 10.1180/000985599545957.CrossRefGoogle Scholar
WRB, World Reference Base for Soil Resources (1998) Rome FAO.Google Scholar