Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T17:00:28.376Z Has data issue: false hasContentIssue false

Vermiculite as A Model System in the Testing of Double Layer Theory

Published online by Cambridge University Press:  01 July 2024

John P. Friend
Affiliation:
Department of Physical Chemistry, University of Sydney, N.S.W., 2006, Australia
Robert J. Hunter
Affiliation:
Department of Physical Chemistry, University of Sydney, N.S.W., 2006, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The microelectrophoretic and adsorption behaviour of lithium vermiculite has been studied as a function of lithium chloride concentration. This was done in an attempt to establish the applicability of such systems to the testing of theories of interaction of flat plates, and in so doing to throw further light on swelling measurements performed on such materials. The studied behaviour, while highly unusual, gave quite good agreement between adsorption and microelectrophoretic parameters and agreed, qualitatively, with some earlier measurements on similar materials.

The observed properties appear to be due to some rather specific structuring effects, either of the oxide surface or of the electrolyte ions. If this is so, these systems are far from ideal models for the testing of the theory of interaction of two uniform flat plates.

Résumé

Résumé

Le comportement microélectrophorétique et d’absorption de la vermiculite de lithium a été étudié en tant que fonction de la concentration du chlorure de lithium. Ceci a été effectué au cours d’une tentative visant à établir l’applicabilité de tels systèmes à l’essai des théories d’interaction de plaques planes et, se faisant, de jeter une plus grande lumière sur les mesures de gonflement effectuées sur ces matériaux. Le comportement étudié, bien que très inhabituel, donnait un accord assez satisfaisant entre les paramètres microélectrophorétique et d’absorption et s’accordait, qualitativement, avec certaines mesures antérieures sur des matériaux similaires.

Les propriétés observées semblent être dues à certains effets spécifiques de structure, soit de la surface oxyde ou des ions de l’électrolyte. Si cela est, ces systèmes sont loin d’être des modèles idéaux pour l’essai de la théorie d’interaction de deux plaques planes uniformes.

Kurzreferat

Kurzreferat

Das mikroelektrophoretische und Adsorptions verhalten von Lithiumvermiculit in Abhängigkeit von der Lithiumchloridkonzentration wurde untersucht. Das geschah im Rahmen eines Versuches die Anwendbarkeit solcher Systeme auf did Prüfung von Theorien über die gegenseitige Wirkung flacher Platten festzustellen, und auf diese Weise mehr Licht auf die an solchen Stoffen ausgeführten Messungen der Aufquellung zu werfen. Das untersuchte Verhalten war wohl ungewöhnlich, zeigte jedoch gute Übereinstimmung zwischen Adsorptions- und mikroelektrophoretischen Parametern und stimmte, qualitativ, mit früheren Messungen an ähnlichen Stoffen überein.

Die beobachteten Eigenschaften scheinen die Folge gewisser struktureller Wirkungen entweder der Oxydoberfläche oder des Elektrolytions zu sein. Sollte das der Fall sein, so sind diese Systeme alles eher als ideale Modelle für die Prüfung der Theorie über die gegenseitige Wirkung zweier gleichförmiger flacher Platten.

Резюме

Резюме

Проведено изучение микроэлектрофоретических и адсорбционных свойств литиевого вермикулита в зависимости от концентрации хлорида лития. Исследование предпринято с целью выяснения возможности использования таких систем для проверки теории взаимодействия плоских пластин и для более правильного истолкования набухания подобных материалов. Изученные свойства хотя и являются весьма необычными, но все же позволяют говорить о хорошем соответствии адсорбционных и микроэлектрофоретических параметров; качественно они согласуются с результатами некоторых ранних исследований аналогичных материалов.

Изученные свойства, по-видимому, обусловлены в первую очередь специфическими структурными эффектами, свойственными как окисным поверхностям, так и электролитическим ионам. Если это действительно так, то подобные системы являются далеко не идеальными моделями для проверки теории взаимодействия двух одинаковых плоских пластин.

Type
Research Article
Copyright
Copyright © 1970 The Clay Minerals Society

References

Alexander, A. E. and Saggers, L. (1948) A simple apparatus for quantitative electrophoretic work: J. Sci. Ins tr. 25, 374.CrossRefGoogle Scholar
Anderson, D. and Low, P. F. (1958) The density of water adsorbed by ithium-, sodium-, and potassium bentonite: Soil Sci. Soc. Am. Proc. 22, 99.CrossRefGoogle Scholar
Barclay, L. and Thompson, D. (1969) Electron microscopy of sodium montmorillonite: Nature 222, 263.CrossRefGoogle Scholar
Bockris, J., Devanathan, M. and Müller, K. (1963) On the structure of charged interfaces: Proe. Rov. Soc. 274A, 55.Google Scholar
Bolt, G. H. (1955) Analysis of the validity of the Gouy-Chapman theory of the electrical double layer: J. Colloid Sci. 10, 206.CrossRefGoogle Scholar
Booth, F. (1950) Electro viscous effect for suspensions of solid spherical particles: Proc. Roy. Soc. London, 203A, 514.Google Scholar
Davidtz, J. (1968) Effect of isomorphous substitution in montmorillonites on the properties of associated water: Ph. D. Thesis, Purdue University.Google Scholar
Deryaguin, B. and Greene-Kelly, R. (1964) Birefringence of thin liquid films: Trans. Faraday Soc. 60, 449.CrossRefGoogle Scholar
Deryaguin, B. (1966) Effect of lyophile surfaces on the properties of boundary liquid films: Disc. Faraday Soc. 42, 109.CrossRefGoogle Scholar
Friend, J. P. (1969) Argentometric titration of chloride with dichlorofluorescein as an adsorption indicator: A useful modification: Talanta 16, 617.CrossRefGoogle Scholar
Garrett, W. G. and Walker, G. F. (1962) Swelling of some vermiculite-organic complexes in water: Clays and Clay Minerals 9, 557.CrossRefGoogle Scholar
Good, W. (1964) The effect of solute concentration on fluidity and structure in aqueous solutions of electrolytes—I. Alkali-metal and ammonium halides: Electrochimica Acta. 9, 203.CrossRefGoogle Scholar
Grahame, D. S. (1947) The electrical double layer and the theory of electrocapillarity: Chem. Rev. 41, 441.CrossRefGoogle ScholarPubMed
Hunter, R. J. (1962) The calculation of zeta potential from mobility measurements: J. Phys. Chem. 66, 1367.CrossRefGoogle Scholar
Hunter, R. J. and Nicol, S. K. (1968) The dependence of plastic flow behaviour of clay suspensions on surface properties: J. Colloid Interface Sci. 28, 250.10.1016/0021-9797(68)90127-6CrossRefGoogle Scholar
Hunter, R. J., Stirling, G. C. and White, J. W. (1969) Dynamics and Structure of water at aluminosilicate-water interfaces: XXII IVPAC Congress, Sydney.Google Scholar
Levine, S. and Bell, G. (1966) Modified Poisson-Boltzmann equation and free energy of electrical double layers in hydrophobic colloids: Disc. Faraday Soc. 42, 69.CrossRefGoogle Scholar
Low, P. F. (1958) Movement and equilibrium of water in soil systems as affected by soil-water forces: Special Report 40, Highway Research Board, Washington, D.C.p. 55.Google Scholar
Norrish, K. and Rausell-Colom, J. A. (1963) Low-angle X-ray diffraction studies of the swelling of montmorillonite and vermiculite: Clays and Clay Minerals 10, 123.Google Scholar
Overbeek, J. Th. G. (1950) Quantitative interpretation of the electrophoretic velocity of colloids: Advan. Colloid Sci. 3, 101.Google Scholar
Rausell-Colom, J. A. (1964) Small-angle X-ray diffraction study of the swelling of butylammonium-vermiculite: Trans. Faraday Soc. 60, 190.CrossRefGoogle Scholar
van den Hul, H. J. and Lyklema, J. (1967) Determination of specific surface areas of dispersed materials by negative adsorption: J. Colloid Interface Sci. 23, 500.CrossRefGoogle Scholar
van Olphen, H. (1962) Unit layer interaction in hydrous montmorillonite systems: J. Colloid Sci. 17, 660.CrossRefGoogle Scholar
Vaslow, F. (1966) The apparent molai volumes of the alkali metal chlorides in aqueous solution and evidence for salt-induced structure transitions: J. Phys. Chem. 70, 2286.CrossRefGoogle Scholar
Verwey, E.J. W. and Overbeek, J. Th. G. (1948) Theory of the Stability of Lyophobic Colloids. Elsevier, London.Google Scholar
Warkentin, V. P. and Schofield, R. K. (1960) Swelling pressures of dilute sodium montmorillonite pastes: Clays and Clay Minerals 7, 343.Google Scholar
Wiersema, P. H., Loeb, A. L. and Overbeek, J. Th. G. (1966) Calculation of the electrophoretic mobility of a spherical colloid particle: J. Colloid Interface Sci. 22, 78.CrossRefGoogle Scholar