Hostname: page-component-669899f699-ggqkh Total loading time: 0 Render date: 2025-04-27T17:10:37.371Z Has data issue: false hasContentIssue false

Unlocking the potential of V/Ti-AAC: a promising eco-friendly catalyst for cyclohexene epoxidation

Published online by Cambridge University Press:  18 November 2024

Noureddine Belaidi*
Affiliation:
Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Algérie
Hajer Azzi
Affiliation:
Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Algérie Université de Ain Temouchent, Faculté des Sciences et de la Technologie, BP 284,46000 Ain Témouchent, Algérie
Sanaa El-Korso
Affiliation:
Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Algérie
Abderrahim Choukchou-Braham
Affiliation:
Laboratoire de Catalyse et Synthèse en Chimie Organique, Faculté des Sciences, Université de Tlemcen, Algérie
Abdelkader Nebatti-Ech Chergui*
Affiliation:
Laboratory of Applied Hydrology and Environment, University of Ain-Temouchent Belhadj Bouchaib, Faculty of Sciences and Technology, Algeria
*
Corresponding authors: N. Belaidi and A. Nebatti-Ech Chergui; Emails: [email protected], [email protected]
Corresponding authors: N. Belaidi and A. Nebatti-Ech Chergui; Emails: [email protected], [email protected]

Abstract

Bentonite is an abundant natural resource in the Maghnia region of Algeria that may have potential value in catalysis, but heretofore has been considered of low value for this purpose due to its low acidity and low catalytic activity. Low cost is one of the main criteria for choosing a suitable material for catalysis. Because bentonite is abundant and low-cost, its use as a starting material for the preparation of catalysts deserves reconsideration. The present study was undertaken, therefore, to optimize the performance of bentonite as a catalyst in one of the most promising reactions in organic synthesis, namely, cyclohexene epoxidation. The bentonite was subjected to adjustment of its structure by means of a number of laboratory treatments based on its large cation exchange capacity. These modifications aimed to achieve an environmentally friendly catalytic process by incorporating transition metals, specifically titanium and vanadium, into the modified bentonite structure through acid activation. Redox properties were enhanced and Lewis and Brønsted acidities were introduced. The vanadium oxide, supported on titania-pillared, acid-activated bentonite (5V/Ti-AAC), was characterized comprehensively using various techniques, including diffuse-reflectance UV-visible spectroscopy (DR UV-Vis), Fourier-transform infrared spectroscopy (FTIR) for surface acidity analysis, X-ray diffraction (XRD), nitrogen adsorption-desorption isotherms, and scanning electron microscopy (SEM) coupled with energy-dispersive X-ray elemental analysis (EDX). The catalytic activity was investigated in response to certain variables, such as catalyst mass, nature of the solvent, amount of oxidant, and reaction temperature. A kinetic study was conducted to understand the reaction behavior. The experimental results demonstrated intriguing catalytic activity, achieving a 42% conversion rate with ~68% selectivity toward the epoxide product when employing tert-butyl hydroperoxide (TBHP) as the oxidant and heptane as the solvent. This study highlights the potential of 5V/Ti-AAC as an environmentally friendly catalyst applied in the epoxidation of cyclohexene.

Type
Original Paper
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

Ameur, N., Bedrane, S., Bachir, R., & Choukchou-Braham, A. (2013). Influence of nanoparticles oxidation state in gold based catalysts on the product selectivity in liquid phase oxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 374-375, 16.CrossRefGoogle Scholar
Arfaoui, J., Khafallah Boudali, L., & Ghorbel, A. (2006). Vanadia-doped titanium-pillared clay: Preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol. Catalysis Communications, 7, 8690.CrossRefGoogle Scholar
Arfaoui, J., Boudali, L. K., Ghorbel, A., & Delahay, G. (2009). Effect of vanadium on the behaviour of unsulfated and sulfated Ti-pillared clay catalysts in the SCR of NO by NH3. Catalysis Today, 142(3-4), 234238.CrossRefGoogle Scholar
Arfaoui, J., Boudali, L. K., & Ghorbel, A. (2010). Catalytic epoxidation of allylic alcohol (E)-2-Hexen-1-ol over vanadium supported on unsulfated and sulfated titanium pillared montmorillonite catalysts: Effect of sulfate groups and vanadium loading. Applied Clay Science, 48(1-2), 171178.CrossRefGoogle Scholar
Azzi, H., Bendahou, K., Cherif-Aouali, L., Hamidi, F., Siffert, S., Bengueddach, A., & Aboukais, A. (2012). Total oxidation of toluene over Pd/mesoporous materials catalysts. Chimica Oggi-Chemistry Today, 30(4), 2830.Google Scholar
Azzi, H., Rekkab-Hammoumraoui, I., Chérif-Aouli, L., & Choukchou-Braham, A. (2019). Mesoporous Co3O4 as a new Catalysts for allylic Oxidation of Cyclohexene Bulletin of Chemical Reaction Engineering & Catalysis, 14(1), 112123.CrossRefGoogle Scholar
Azzi, H., Chérif, L., & Siffert, S. (2020). Gold catalysts supported on cerium-modified mesoporous zirconia for total toluen oxidation. Effect of Ce/Zr molar ratio. Research on Chemical Intermediates, 47(3), 10091019.CrossRefGoogle Scholar
Bahranowski, K., Dula, R., Komorek, J., Romotowski, T., & Serwicka, E. M. (1995). Preparation, physicochemical characterization and catalytic properties of vanadium-doped alumina- and titania-pillared montmorillonites. In: Studies in Surface Science and Catalysis. Elsevier, 91 (Poncelet, G., Martens, J., Delmon, B., Jacobs, P.A., and Grange, P., editors) pp. 747754.Google Scholar
Bahranowski, K., Janas, J., Machej, T., Serwicka, E. M., & Vartikian, L. A. (1997). Vanadium-doped titania-pillared montmorillonite clay as a catalyst for selective catalytic reduction of NO by ammonia. Clay Minerals, 32(4), 665672.CrossRefGoogle Scholar
Bahranowski, K., Grabowski, R., Grzybowska, B., Kielski, A., Serwicka, E. M., Wcisło, K., Wodnicka, K. (2000). Synthesis and physicochemical properties of vanadium-doped zirconia-pillared montmorillonites in relation to oxidative dehydrogenation of propane. Topics in Catalysis, 11/12, 255261.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W., & Brown, G., editors (1980) Structures of Clay Minerals and their X-ray Identification. Mineralogical Society, London.Google Scholar
Bardestani, R., Patience, G. S., & Kaliaguine, S. (2019). Experimental methods in chemical engineering: specific surface area and pore size distribution measurements—BET, BJH, and DFT. The Canadian Journal of Chemical Engineering, 97(11), 27812791.CrossRefGoogle Scholar
Belaidi, N., Bedrane, S., Choukchou-Braham, A., & Bachir, R. (2015). Novel vanadium-chromium-bentonite green catalysts for cyclohexene epoxidation. Applied Clay Science, 107, 1420.CrossRefGoogle Scholar
Bineesh, K. V., Cho, D. R., Kim, S. Y., Jermy, B. R., & Park, D. W. (2008). Vanadium-doped titania-pillared montmorillonite clay for the selective catalytic oxidation of H2S. Catalysis Communications, 9, 20402043.CrossRefGoogle Scholar
Bineesh, K. V., Kim, S.-Y., Jermy, B. R., & Park, D.-W. (2009). Catalytic performance of vanadia-doped titania-pillared clay for the selective catalytic oxidation of H2S. Journal of Industrial and Engineering Chemistry, 15(2), 207211.CrossRefGoogle Scholar
Bineesh, K. V., Kim, D.-K., Kim, D.-W., Cho, H.-J., & Park, D.-W. (2010a). Selective catalytic oxidation of H2S to elemental sulfur over V2O5/Zr-pillared montmorillonite. Energy & Environmental Science, 3, 302310.CrossRefGoogle Scholar
Bineesh, K. V., Kim, D.-K., & Park, D.-W. (2010b). Synthesis and characterization of zirconium-doped mesoporous nano-crystalline TiO2. Royal Society of Chemistry/ Nanoscale, 2, 12221228.Google ScholarPubMed
Bineesh, K. V., Kim, D.-K., Kim, M.-I., & Park, D.-W. (2011). Selective catalytic of H2S over V2O5 supported on TiO2-pillared clay catalysts in the presence of water and ammonia. Applied Clay Science, 53, 204211.CrossRefGoogle Scholar
Brutchey, R. L., Mork, B. V., Sirbuly, D. J., Yang, P., & Tilley, T. D. (2005). A dimeric molecular precursor [( t BuO)2Ti{μ-O2Si[OSi(O t Bu)3]2}]2 to Ti(IV)/SiO2 catalysts for selective cyclohexene epoxidation. Journal of Molecular Catalysis A: Chemical, 238(1-2), 112.CrossRefGoogle Scholar
Candan Karaeyvaz, M., & Balci, S. (2021). One pot synthesis of aluminum pillared intercalated layered clay supported silicotungstic acid (STA/Al-PILC) catalysts. Microporous and Mesoporous Materials, 323, 111193.CrossRefGoogle Scholar
Centi, G., & Perathoner, S. (2008). Catalysis by layered materials: A review. Microporous and Mesoporous Materials, 107(1-2), 315.CrossRefGoogle Scholar
Chae, H. J., Nam, I.-S., Ham, S.-W., & Hong, S. B. (2004). Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3. Applied Catalysis B: Environmental, 53(2), 117126.CrossRefGoogle Scholar
Chaker, H., Fourmentin, S., & Chérif-Aouali, L. (2020). Efficient Photocatalytic Degradation of Ibuprofen under Visible Light Irradiation Using Silver and Cerium Co‐Doped Mesoporous TiO2. Chemistry Select, 5(38), 1178711796.Google Scholar
Chary, V. R., Kumar, C. P., Naresh, D., Bhaskar, T., & Sakata, Y. (2006). Characterization and reactivity of Al2O3–ZrO2 supported vanadium oxide catalysts. Journal of Molecular Catalysis A: Chemical, 243(2), 149157.CrossRefGoogle Scholar
Chen, D., Zhu, Q., Zhou, F., Deng, X., & Li, F. (2012). Synthesis and photocatalytic performances of the TiO2 pillared montmorillonite [Research Support, Non-U.S. Gov’t]. Journal of Hazardous Materials, 235-236, 186193.CrossRefGoogle ScholarPubMed
Chitnis, S. R., & Sharma, M. M. (1997). Industrial applications of acid-treated clays as catalysts. Reactive & Functional Polymers, 32, 93115.CrossRefGoogle Scholar
Ciesielski, H., & Sterckeman, T. (1997). Determination of cation exchange capacity and exchangeable cations in soils by means of cobalt hexamine trichloride. Effects of experimental conditions. Agronomie: Agriculture and Environment, 17, 17.CrossRefGoogle Scholar
Comite, A., Sorrentino, A., Capannelli, G., Di Serio, M., Tesser, R., & Santacesaria, E. (2003). Oxidative dehydrogenation of propane using V2O5/TiO2/SiO2 catalysts prepared by grafting titanium and vanadium alkoxides on silica. Journal of Molecular Catalysis A: Chemical, 198(1-2), 151165.CrossRefGoogle Scholar
Concepcion, P., Navarro, M., Blasco, T., Lopeznieto, J., Panzacchi, B., & Rey, F. (2004). Vanadium oxide supported on mesoporous Al2O3 Preparation, characterization and reactivity. Catalysis Today, 96(4), 179186.CrossRefGoogle Scholar
El-Korso, S., Khaldi, I., Bedrane, S., Choukchou-Braham, A., Thibault-Starzyk, F., & Bachir, R. (2014). Liquid phase cyclohexene oxidation over vanadia based catalysts with tert-butyl hydroperoxide: Epoxidation versus allylic oxidation. Journal of Molecular Catalysis A: Chemical, 394, 8996.CrossRefGoogle Scholar
El-Korso, S., Bedrane, S., Choukchou-Braham, A., & Bachir, R. (2015). The effect of redox properties of ceria-supported vanadium oxides in liquid phase cyclohexene oxidation. RSC Advances, 5, 6338263392.CrossRefGoogle Scholar
El-Korso, S., Bedrane, S., Choukchou-Braham, A., & Bachir, R. (2016). Investigation of the effect of VOx/ZrO2 structure on the catalytic activity in cyclohexene epoxidation. RSC Advances, 6, 110375110382.CrossRefGoogle Scholar
Farzaneh, F., Zamanifar, E., & Williams, C. D. (2004). V-MCM-41 as selective catalyst for epoxidation of olefins and trans-2-hexene-1-ol. Journal of Molecular Catalysis A: Chemical, 218(2), 203209.CrossRefGoogle Scholar
Gao, J., Chen, Y., Han, B., Feng, Z., Li, C., Zhou, N., Xi, Z. (2004). A spectroscopic study on the reaction-controlled phase transfer catalyst in the epoxidation of cyclohexene. Journal of Molecular Catalysis A: Chemical, 210(1-2), 197204.CrossRefGoogle Scholar
Held, A., Kowalska-Kuś, J., & Nowińska, K. (2012). Epoxidation of propene on vanadium species supported on silica supports of different structure. Catalysis Communications, 17, 108113.CrossRefGoogle Scholar
Huang, Q., Zuo, S., & Zhou, R. (2010). Catalytic performance of pillared interlayered clays (PILCs) supported CrCe catalysts for deep oxidation of nitrogen-containing COCs. Applied Catalysis B: Environmental, 95, 327334.CrossRefGoogle Scholar
Iannazzo, V., Neri, G., Galvagno, S., Di Serio, M., Tesser, R., & santacesaria, E. (2003). Oxidative dehydrogenation of isobutane over V2O5-based catalysts prepared by grafting vanadyl alkoxides on TiO2-SiO2 supports. Applied Catalysis A: General, 246(1), 4968.CrossRefGoogle Scholar
Khare, S., & Shrivastava, S. (2004). Epoxidation of cyclohexene catalyzed by transition-metal substituted α-titanium arsenate using tert-butyl hydroperoxide as an oxidant. Journal of Molecular Catalysis A: Chemical, 217, 5158.CrossRefGoogle Scholar
Komadel, P., & Madejová, J. (2006). Acid Activation of Clay Minerals. Developments in Clay Science, 1, Elsevier, Amsterdam, pp. 263287.Google Scholar
Kumar Roy, S., Dutta, D., & Talukdar, A. K. (2018). Highly effective methylated Ti MCM-41 catalyst for cyclohexene oxidation. Materials Research Bulletin, 103, 3846.Google Scholar
Kumaresan, L., Prabhu, A., Palanichamy, M., & Murugesan, V. (2010). Mesoporous Ti-KIT-6 molecular sieves: Their catalytic activity in the epoxidation of cyclohexene. Journal of the Taiwan Institute of Chemical Engineers, 41(6), 670675.CrossRefGoogle Scholar
Kwon, S., Schweitzer, N. M., Park, S., Stair, P. C., & Snurr, R. Q. (2015). A kinetic study of vapor-phase cyclohexene epoxidation by H2O2 over mesoporous TS-1. Journal of Catalysis, 326, 107115.CrossRefGoogle Scholar
Lippens, B. C., & De Boer, J. H. (1995). Studies on Pore Systems in Catalysts V. The t Method. Journal of Catalysis, 4, 319323.CrossRefGoogle Scholar
Long, R. Q., & Yang, R. T. (2000a). Catalytic Performance and Characterization of VO2+-Exchanged Titania-Pillared Clays for Selective Catalytic Reduction of Nitric Oxide with Ammonia. Journal of Catalysis, 196(1), 7385.CrossRefGoogle Scholar
Long, R. Q., & Yang, R. T. (2000b). Selective catalytic reduction of NO with ammonia over V2O5 doped TiO2-pillared clay catalysts. Applied Catalysis B: Environmental, 24, 1321.CrossRefGoogle Scholar
Mikolajska, E., Calvino-Casilda, V., & Bañares, M. A. (2012). Real-time Raman monitoring of liquid-phase cyclohexene epoxidation over alumina-supported vanadium and phosphorous catalysts. Applied Catalysis A: General, 421-422, 164171.CrossRefGoogle Scholar
Murgia, V., Torres, E. M. F., Gottifredi, J. C., & Sham, E. L. (2006). Sol–gel synthesis of V2O5–SiO2 catalyst in the oxidative dehydrogenation of n-butane. Applied Catalysis A: General, 312, 134143.CrossRefGoogle Scholar
Najafi, H., Farajfaed, S., Zolgharnian, S., Mosavi Mirak, S. H., Asasian-Kolur, N., & Sharifian, S. (2021). A comprehensive study on modified-pillared clays as an adsorbent in wastewater treatment processes. Process Safety and Environmental Protection, 147, 836.CrossRefGoogle Scholar
Nanjundaswamy, K. S., Padhi, A. K., Goodenough, J. B., Okadab, S., Ohtsukab, H., Araib, H., & Yamaki, J. (1996). Synthesis, redox potential evaluation and electrochemical characteristics of NASICON-related-3D framework compounds. Solid State Ionics, 92, 110.CrossRefGoogle Scholar
Oubagaranadin, J. U. K., Murthy, Z. V. P., & Mallapur, V. P. (2010). Removal of Cu(II) and Zn(II) from industrial wastewater by acid-activated montmorillonite-illite type of clay. Comptes Rendus Chimie, 13(11), 13591363.CrossRefGoogle Scholar
Ouidri, S., Guillard, C., Caps, V., & Khalaf, H. (2010). Epoxidation of olefins on photoirradiated TiO2-pillared clays. Applied Clay Science, 48(3), 431437.CrossRefGoogle Scholar
Parida, K. M., & Mallick, S. (2009). Phosphotungstic acid promoted zirconia–alumina mixed oxides: A stable and reusable catalysts for epoxidation of trans-stilbene. Catalysis Communications, 11(1), 5157.CrossRefGoogle Scholar
Patoux, S., & Masquelier, C. (2002). Lithium Insertion into Titanium Phosphates, Silicates, and Sulfates. Chemicals Materials, 14, 50575068.CrossRefGoogle Scholar
Pinnavaia, T. J. (1983). Intercalated clay catalysts. Science, 220(4595), 365371.CrossRefGoogle ScholarPubMed
Rhodes, C. N., Franks, M., Parkes, G. M. B., & Brown, D. R. (1991). The effect of acid treatment on the activity of clay supports for ZnCl2 alkylation catalysts. Journal of the Chemical Society, Chemical Communications, 12(12), 804807.CrossRefGoogle Scholar
Salavati-Niasari, M., Shaterian, M., Ganjali, M. R., & Norouzi, P. (2007). Oxidation of cyclohexene with tert-butylhydroperoxide catalysted by host (nanocavity of zeolite-Y)/guest (Mn(II), Co(II), Ni(II) and Cu(II) complexes of N,N′-bis(salicylidene)phenylene-1,3-diamine) nanocomposite materials (HGNM). Journal of Molecular Catalysis A: Chemical, 261(2), 147155.CrossRefGoogle Scholar
Sedighipoor, M., Kianfar, A. H., Mahmood, W. A. K., & Azarian, M. H. (2017). Epoxidation of alkenes by an oxidovanadium(IV) tetradentate Schiff base complex as an efficient catalyst with tert-butyl hydroperoxide. Inorganica Chimica Acta, 457, 116121.CrossRefGoogle Scholar
Shimizu, K.-I., Kaneko, T., Fujishima, T., Kodama, T., Yoshida, H., & Kitayama, Y. (2002). Selective oxidation of liquid hydrocarbons over photoirradiated TiO2 pillared clays. Applied Catalysis A: General, 225, 185191.CrossRefGoogle Scholar
Sreethawong, T., Yamada, Y., Kobayashi, T., & Yoshikawa, S. (2005). Catalysis of nanocrystalline mesoporous TiO2 on cyclohexene epoxidation with H2O2: Effects of mesoporosity and metal oxide additives. Journal of Molecular Catalysis A: Chemical, 241(1-2), 2332.CrossRefGoogle Scholar
Su, H., Li, Z., Huo, Q., Guan, J., & Kan, Q. (2014). Immobilization of transition metal (Fe2+, Co2+, VO2+ or Cu2+) Schiff base complexes onto graphene oxide as efficient and recyclable catalysts for epoxidation of styrene. RSC Advances, 4(20), 99909996.CrossRefGoogle Scholar
Torres, M., los Santos, C., Portugau, P., Yeste, M. D. P., & Castiglioni, J. (2021). Utilization of a PILC-Al obtained from Uruguayan clay as support of mesoporous MnOx-catalysts on the combustion of toluene. Applied Clay Science, 201, 105935.CrossRefGoogle Scholar
Wang, T., Zhu, R. L., Ge, F., Zhu, J. X., He, H. P., & Chen, W. X. (2010). Sorption of phenol and nitrobenzene in water by CTMAB/CPAM organobentonites. Huan jing Ke xue/ Environmental Science, 31(2), 385389.Google ScholarPubMed
Wang, X., You, Q., Wu, Y., Bi, C., Chen, H., Dai, C., Ma, X. (2021). Tungsten-substituted Silicate-1 with an interconnected hollow structure for catalytic epoxidation of cyclohexene. Microporous and Mesoporous Materials, 317, 111028.CrossRefGoogle Scholar
Yamanka, S., Nishihara, T., & Hattori, M. (1987). Preparation and properties of titania pillared clay. Materials Chemistry and Physics, 17, 87101.CrossRefGoogle Scholar
Yuan, P., Yin, X., He, H., Yang, D., Wang, L., & Zhu, J. (2006). Investigation on the delaminated-pillared structure of TiO2-PILC synthesized by TiCl4 hydrolysis method. Microporous and Mesoporous Materials, 93(1-3), 240247.CrossRefGoogle Scholar
Zhang, H., Yang, X., Song, X., Chang, X., & Jia, M. (2020). Hydrothermal synthesis of tungsten-tin bimetallic MFI type zeolites and their catalytic properties for cyclohexene epoxidation. Microporous and Mesoporous Materials, 303, 110277.CrossRefGoogle Scholar