Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-07T16:37:02.525Z Has data issue: false hasContentIssue false

Transmission Electron Microscopy Study of Illitization in Pelites from the Iberian Range, Spain: Layer-by-Layer Replacement?

Published online by Cambridge University Press:  28 February 2024

Blanca Bauluz*
Affiliation:
Departamento de Ciencias de la Tierra, Cristalografia y Mineralogia, Universidad de Zaragoza, 50.009 Zaragoza, Spain
Donald R. Peacor
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109-1063, USA
Jose Manuel Gonzalez Lopez
Affiliation:
Departamento de Ciencias de la Tierra, Cristalografia y Mineralogia, Universidad de Zaragoza, 50.009 Zaragoza, Spain
*
E-mail of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A sequence of interstratified illite-smectite (I-S) and illite in Paleozoic pelites and metapelites from the Iberian Range, Spain, was studied by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The fine-grained matrix of diagenetic pelites is composed of I-S with sequences of illite- and smectite-like layers in a given sample. The Reichweite (R) values as determined by XRD and averaged over heterogenous I-S layer sequences increase with increasing grade, apparently continuously, in sharp contrast with TEM observations of other published sequences. Changes in I-S sequences along layers are rarely observed. In the higher-grade diagenetic pelites, I-S coexists with illite. Each I-S phase has a composition similar to that of illite, implying unique Al-Si distributions in contrast to smectite and muscovite. Selected area electron diffraction (SAED) patterns of I-S and illite are diagnostic of 1Md polytypism. Anchizonal metapelites consist of larger packets of well-crystallized muscovite, with SAED patterns corresponding to a two-layer polytype.

The continuous sequence of changes studied by TEM in I-S sequences and lateral transitions among these units is consistent with illitization by layer-by-layer replacement, although other processes are possible also. Replacement of individual layers probably occurs via fluids at reaction interfaces, in contrast to solid-state reactions, sensu strictu. The transition from the diagenetic to anchizonal rocks (transition in textures and formation of muscovite-2M1) occurred via dissolution/crystallization, however, presumably by tectonic stress. XRD and TEM data imply a consistent prograde trend in the sequence, the XRD data denning the average, long-range Reichweite ordering sequence, whereas the TEM data define the short-range layer sequences.

Type
Research Article
Copyright
Copyright © 2000, The Clay Minerals Society

References

Ahn, J.H. and Peacor, D.R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays and Clay Minerals 34 165179 10.1346/CCMN.1986.0340207.Google Scholar
Ahn, J.-H. and Peacor, D.R., 1987 Kaolinitizacion of biotite: TEM data and implications for an alteration mechanism American Mineralogist 72 353356.Google Scholar
Ahn, J.H. and Peacor, D.R., 1989 Illite/smectite from Gulf Coast shales: A reappraisal of transmission microscope images Clays and Clay Minerals 37 542546 10.1346/CCMN.1989.0370606.Google Scholar
Altaner, S.P. and Ylagan, R.F., 1997 Comparison of structural models of mixed-layer illite/smectite and reaction mechanisms of smectite illitization Clays and Clay Minerals 45 517533 10.1346/CCMN.1997.0450404.CrossRefGoogle Scholar
Altaner, S.P. Whitney, G. Aronson, J.L. and Hower, J., 1984 A model for K-bentonite formation, evidence from zoned K-bentonites in the disturbed belt, Montana Geology 12 412415 10.1130/0091-7613(1984)12<412:MFKFEF>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Altaner, S.P. and Weiss, C.A. Jr. and Krikpatrick, R.J., 1988 Evidence from 29Si NMR for the structure of mixed-layer illite/smectite clay minerals Nature 331 699702 10.1038/331699a0.CrossRefGoogle Scholar
Arkai, P. Merriman, R.J. Roberts, B. Peacor, D.R. and Toth, M., 1996 Crystallinity, crystallite size and lattice strain of illite-muscovite and chlorite: Comparison of XRD and TEM data for diagenetic to epizonal pelites European Journal of Mineralogy 8 11191137 10.1127/ejm/8/5/1119.CrossRefGoogle Scholar
Barron, P.F. Slade, P. and Frost, R.L., 1985 Ordering of aluminum in tetrahedral sites in mixed-layer 2:1 phyllos-ilicates by solid-state high-resolution NMR Journal of Physical Chemistry 89 38803885 10.1021/j100264a023.CrossRefGoogle Scholar
Bauluz, B., 1997 Caracterización mineralògica y geoqmmica de materiales detriticos precámbricos y paleozoicos de las Cadenas Ibéricas: Evolución post-sedimentaria Spain University of Zaragoza.Google Scholar
Bauluz, B. Mayayo, M.J. Fernandez-Nieto, C. and Gonzalez Lopez, J.M., 1995 Mineralogy and geochemistry of Devonian detrital rocks from the Iberian Range (Spain) Clay Minerals 30 381394 10.1180/claymin.1995.030.4.10.CrossRefGoogle Scholar
Bauluz, B. Fernandez-Nieto, C. and Gonzalez-Lopez, J.M., 1998 Diagenesis—very low-grade metamorphism of clastic Cambrian and Ordovician sedimentary rocks in the Iberian Range (Spain) Clay Minerals 33 373394 10.1180/000985598545697.CrossRefGoogle Scholar
Brown, G. Weir, A.H., Rosenquest, T.h. and Graff-Petterson, P., 1963 The identity of rectorite and allevardite Proceedings of International Clay Conference Stockholm, Sweden, Volume 1 Oxford Pergamon Press 2735.Google Scholar
Brusewitz, A., 1986 Chemical and physical properties of Paleozoic potassium bentonites from Kinnekulle, Sweden Clays and Clay Minerals 34 442454 10.1346/CCMN.1986.0340411.CrossRefGoogle Scholar
Buatier, M. Peacor, D.R. and O’Neil, J.R., 1992 Smectite-illite transition in Barbados accretionary wedge sediments: TEM and AEM evidence for dissolution/crystallization at low temperature Clays and Clay Minerals 40 6580 10.1346/CCMN.1992.0400108.CrossRefGoogle Scholar
Caillere, S. Henin, S. and Rautureau, M., 1982 Mineralogie des Argiles. II. Classification et Nomenclature Paris Masson 4587.Google Scholar
Dong, H. and Peacor, D.R., 1996 TEM observations of coherent stacking relations in smectite, I/S and illite of shales: Evidence for McEwan crystallites and dominance of 2M 1 polytypism Clays and Clay Minerals 44 257275 10.1346/CCMN.1996.0440211.CrossRefGoogle Scholar
Dong, H. Peacor, D.R. and Freed, R.L., 1997 Phase relations among smectite, Rl illite-smectite, and illite American Mineralogist 82 379391 10.2138/am-1997-3-416.CrossRefGoogle Scholar
Essene, E.J. and Peacor, D.R., 1995 Clay mineral thermometry—A critical perspective Clays and Clay Minerals 43 540553 10.1346/CCMN.1995.0430504.CrossRefGoogle Scholar
Freed, R.L. and Peacor, D.R., 1992 Diagenesis and the formation of authigenic illite-rich I/S crystals in Gulf Coast shales: TEM study of clay separates Journal of Sedimentary Petrology 62 220234.Google Scholar
Frey, M. and Frey, M., 1987 Very low-grade metamorphism of clastic sedimentary rocks Low Temperature Metamorphism Glasgow Blackie 958.Google Scholar
Grubb, S.M.B. Peacor, D.R. and Jiang, W.-T., 1991 Transmission electron microscope observations of illite polytypism Clays and Clay Minerals 39 540550 10.1346/CCMN.1991.0390509.CrossRefGoogle Scholar
Guthrie, G.D. and Reynolds, R.C. Jr., 1998 A coherent TEM- and XRD-description of mixed-layer illite/smectite Canadian Mineralogist 36 14211434.Google Scholar
Guthrie, G.D. and Veblen, D.R., 1989 High-resolution transmission electron microscopy of mixed-layer illite/ smectite: Computer simulation Clays and Clay Minerals 37 111 10.1346/CCMN.1989.0370101.CrossRefGoogle Scholar
Guthrie, G.D. Veblen, D.R., Coyne, L.M. McKeever, S.W.S. and Blake, D.F., 1989 High-resolution transmission electron microscopy applied to clay minerals Spectroscopic Characterization of Minerals and Their Surfaces Washington, D.C. Symposia Series 415, American Chemical Society 7593.Google Scholar
Guthrie, G.D. and Veblen, D.R., 1990 Interpreting one-dimensional high-resolution transmission electron micrographs of sheet silicates by computer simulation American Mineralogist 75 276288.Google Scholar
Horton, D.G., 1985 Mixed-layer illite/smectite as a paleotemperature indicator in the Amethyst vein system, Creede district, Colorado, USA Contributions to Mineralogy and Petrology 91 171179 10.1007/BF00377764.CrossRefGoogle Scholar
Hower, J. Eslinger, E.V. Hower, M.E. and Perry, E.A., 1976 Mechanism of burial metamorphism of argillaceous sediments: Mineralogical and chemical evidence Geological Society of America Bulletin 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Jadgozinski, H., 1949 Eindimensionale fehlordnung in kristallen und ihr einfluss auf die Rontgeninterferenzen. I. Berechnung des fehlordnungsgrades au der Rontgenintensi-taten Acta Crystallographica 2 201207 10.1107/S0365110X49000552.CrossRefGoogle Scholar
Jakobsen, H.J. Nielsen, N.C. and Lindgreen, H., 1995 Sequences of charged sheets in rectorite American Mineralogist 80 247252 10.2138/am-1995-3-406.CrossRefGoogle Scholar
Jiang, W.-T. and Peacor, D.R., 1993 Formation and modification of metastable intermediate sodium potassium mica, paragonite, and muscovite in hydrothermally altered me-tabasites from northern Wales American Mineralogist 78 782793.Google Scholar
Jiang, W.-T. Peacor, D.R. Merriman, R.J. and Roberts, B., 1990 Transmission and analytical electron microscopic study of mixed-layer illite/smectite formed as an apparent replacement product of diagenetic illite Clays and Clay Minerals 38 449469 10.1346/CCMN.1990.0380501.CrossRefGoogle Scholar
Kim, J.W. Peacor, D.R. Tessier, D. and Elsass, F., 1995 A technique for maintaining texture and permanent expansion of smectite interlayers for TEM observations Clays and Clay Minerals 43 5157 10.1346/CCMN.1995.0430106.CrossRefGoogle Scholar
Kisch, H.J., 1991 Development of slaty cleavage and degree of very-low grade metamorphism: A review Journal of Metamorphic Geology 9 735750 10.1111/j.1525-1314.1991.tb00562.x.CrossRefGoogle Scholar
Kubier, B., 1967 Anchimetamorphisme et schistosite Bulletin du Centre de Recherches de Pau 1 259278.Google Scholar
Lee, J.H.K. Peacor, D.R. Lewis, D.D. and Wintsch, R.P., 1985 Chlorite-illite/muscovite interlayered and interstrat-ified crystals: A TEM/STEM study Contributions to Mineralogy and Petrology 88 372385 10.1007/BF00376762.CrossRefGoogle Scholar
Maxwell, D.T. and Hower, J., 1967 High-grade diagenesis and low-grade metamorphism of illite in the precambrian belts series The American Mineralogist 52 843857.Google Scholar
Merriman, R.J. Roberts, B. and Peacor, D.R., 1990 A transmission electron microscope study of white mica crystallite size distribution in a mudstone to slate transitional sequence, North Wales, UK Contributions to Mineralogy and Petrology 106 2740 10.1007/BF00306406.CrossRefGoogle Scholar
Morton, J.R., 1985 Rb-Sr evidence for punctuated illite/smectite diagenesis in the Oligocene Frio Formation, Texas Gulf Coast Geological Society of America Bulletin 96 114122 10.1130/0016-7606(1985)96<114:REFPID>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Nadeau, P.H. and Bain, D.C., 1986 Composition of some smectites and diagenetic illitic clays and implications for their origin Clays and Clay Minerals 34 455464 10.1346/CCMN.1986.0340412.CrossRefGoogle Scholar
Nadeau, P.H. Tait, J.M. McHardy, W.J. and Wilson, M.J., 1984 Interstratifìed XRD characteristics of physical mixtures of elementary clay particles Clay Minerals 19 6776 10.1180/claymin.1984.019.1.07.CrossRefGoogle Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., 1984 Interstratifìed clays as fundamental particles Science 225 923925 10.1126/science.225.4665.923.CrossRefGoogle ScholarPubMed
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., 1984 Interparticle diffraction: A new concept for interstratifìed clays Clay Minerals 19 757769 10.1180/claymin.1984.019.5.06.CrossRefGoogle Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J.M., 1985 The conversion of smectite to illite during diagenesis. Evidence from some illitic clays from bentonites and sandstones Mineralogical Magazine 49 393400 10.1180/minmag.1985.049.352.10.CrossRefGoogle Scholar
Ohr, M. Halliday, A.N. and Peacor, D.R., 1991 Sr and Nd isotopic evidence for punctuated clay diagenesis, Texas Gulf Coast Earth and Planetary Science Letters 105 110126 10.1016/0012-821X(91)90124-Z.CrossRefGoogle Scholar
Peacor, D.R. and Buseck, R.R., 1992 Analytical electron microscopy: X-ray analysis Analytical Electron Microscopy: X-ray Analysis, Reviews in Mineralogy, Volume 27 Washington, D.C Mineralogical Society of America.Google Scholar
Peacor, D.R., 1998 Implications of TEM data for the concept of fundamental particles Canadian Mineralogist 36 13971408.Google Scholar
Ransom, B. and Heldeson, H.C., 1993 Compositional end members and thermodynamic components of illite and dioctahedral aluminous smectite solid solutions Clays and Clay Minerals 41 537550 10.1346/CCMN.1993.0410503.CrossRefGoogle Scholar
Srodofi, J. Eberl, D.D. and Ribbe, R.H., 1984 Mite Micas, Reviews in Mineralogy, Volume 13 Washington, D.C. Mineralogical Society of America 495544.Google Scholar
Srodofi, J. Morgon, D.J. Eslinger, E.V. Eberl, D.D. and Kar-linger, M.R., 1986 Chemistry of illite/smectite and end member illite Clays and Clay Minerals 34 368378 10.1346/CCMN.1986.0340403.Google Scholar
Vali, H. Hesse, R. and Martin, R.E., 1994 A TEM-based definition of 2:1 layer silicates and their interstratifìed constituents American Mineralogist 79 644653.Google Scholar
Veblen, D.R. and Guthrie, G.D. Jr. Livi, K.J.T. and Reynolds, R.C. Jr., 1990 High-resolution transmission electron microscopy and electron diffraction of mixed-layer illite/ smectite: Experimental results Clays and Clay Minerals 38 113 10.1346/CCMN.1990.0380101.CrossRefGoogle Scholar
Warr, L.N. and Rice, A.H.N., 1994 Interlaboratory standardization and calibration of clay mineral crystallinity size data Journal of Metamorphic Geology 12 141152 10.1111/j.1525-1314.1994.tb00010.x.CrossRefGoogle Scholar
Yang, C. and Hesse, R., 1991 Clay minerals as indicators of diagenetic and anchimetamorphic grade in an overthrust belt, external domain of southern Canadian Appalachians Clay Minerals 26 211231 10.1180/claymin.1991.026.2.06.CrossRefGoogle Scholar
Yau, Y.C. Anovitz, L.M. Essene, E.J. and Peacor, D.R., 1984 Phlogopite-chlorite reaction mechanisms and physical conditions during retrograde reactions in the Marble Formation, Franklin, New Jersey Contributions to Mineralogy and Petrology 88 299306 10.1007/BF00380175.CrossRefGoogle Scholar