Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-23T16:10:23.616Z Has data issue: false hasContentIssue false

Transformation of Synthetic Zn-Stevensite to Zn-Talc Induced by the Hofmann-Klemen Effect

Published online by Cambridge University Press:  01 January 2024

S. Petit*
Affiliation:
Université de Poitiers, FRE3114 CNRS, HydrASA, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex, France
D. Righi
Affiliation:
Université de Poitiers, FRE3114 CNRS, HydrASA, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex, France
A. Decarreau
Affiliation:
Université de Poitiers, FRE3114 CNRS, HydrASA, 40 Avenue du Recteur Pineau, F-86022 POITIERS Cedex, France
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Stevensite-like sauconite, with the general composition: Si4(Zn3−x□x)O10(OH)2R2x+\$\end{document}, where □ is a vacant site, was synthesized. The objective was to study the possible migration of some cations (Li+ and Zn2+) within such trioctahedral smectites, under heating, following the so-called ‘Hofmann-Klemen’ (HK) effect. The initial gel was divided into five aliquots and placed in teflon-coated hydrothermal reactors with distilled water, and these were hydrothermally treated at 80, 100, 120, 150, and 200°C, respectively, over 30 days. X-ray diffraction (XRD) analysis confirmed that the samples synthesized were smectites. The number of vacant sites (x) per half unit cell (O10(OH)2) ranged from nearly 0 to 0.23 but no simple relationship was established between x and the temperature of synthesis. The samples were Li+- and Zn2+-saturated, and heated overnight at 300°C (HK treatment). Cation exchange capacity measurements were made by Fourier transform infrared spectroscopy (FTIR) on NH4+\$\end{document}-saturated samples. After LiHK treatment, the structural formula of samples could be expressed as: Si4Zn(3−x)LixO10(OH)2NH4x+\$\end{document}, while after ZnHK treatment, it could be expressed as: Si4Zn3O10(OH)2. Analysis by XRD and FTIR showed that the samples moved from a Zn-stevensite-like structure to Zn-talc-like structure after treatment with ZnHK. These results are interpreted asevidence that Zn2+ (and Li+) migrated into the previously vacant sites under HK treatment.

Type
Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Brindley, G.W., Brindley, G.W. Brown, G., 1980 Kerolite and pimelite Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 167.CrossRefGoogle Scholar
Cuevas, J. Ramirez, S. Petit, S. Meunier, A. and Leguey, S., 2003 Chemistry of Mg smectites in lacustrine sediments from the Vicálvaro sepiolite deposit, Madrid Neogene basin (Spain) Clays and Clay Minerals 51 457472 10.1346/CCMN.2003.0510413.CrossRefGoogle Scholar
Czímerová, A. Bujdák, J. and Dohrmann, R., 2006 Traditional and novel methodsfor estimating the layer charge of smectites Applied Clay Science 34 213 10.1016/j.clay.2006.02.008.CrossRefGoogle Scholar
Decarreau, A., 1985 Partitioning of divalent transition elements between octahedral sheets of trioctahedral smectites and water Geochimica et Cosmochimica Acta 44 15371544 10.1016/0016-7037(85)90258-3.CrossRefGoogle Scholar
Decarreau, A. Grauby, O. and Petit, S., 1992 The actual distribution of octahedral cations in 2:1 clay minerals: results from clay synthesis Applied Clay Science 7 147167 10.1016/0169-1317(92)90036-M.CrossRefGoogle Scholar
Decarreau, A. Petit, S. Martin, F. Farges, F. Vieillard, P. and Joussein, J., 2008 Hydrothermal synthesis between 75 and 150°C of high-charge ferric nontronites Clays and Clay Minerals 56 322337 10.1346/CCMN.2008.0560303.CrossRefGoogle Scholar
Emmerich, K. Madsen, F.T. and Kahr, G., 1999 Dehydroxylation behavior of heat treated and steam treated homoionic cis-vacant montmorillonites Clays and Clay Minerals 47 591604 10.1346/CCMN.1999.0470506.CrossRefGoogle Scholar
Emmerich, K. Plötze, M. and Kahr, G., 2001 Reversible collapse and Mg2+ release of de- and rehydroxylated homoionic cis-vacant montmorillonites Applied Clay Science 19 143154 10.1016/S0169-1317(01)00049-7.CrossRefGoogle Scholar
Esquevin, J., 1955 Synthèse de montmorillonites zincifères Comptes Rendus Academie des Science 241 21 14851486.Google Scholar
Esquevin, J., 1956 Synthèse de phyllites zincifères Bulletin du Groupe Français des Argiles 8 3 2327 10.3406/argil.1956.931.CrossRefGoogle Scholar
Esquevin, J., 1960 Les silicates de zinc. Etude de produits de synthèse Annales Agronomiques 11 497556.Google Scholar
Faust, G.T., 1951 Thermal analysis and X-ray studies of sauconite and of some zinc minerals of the same paragenetic association American Mineralogist 36 795822.Google Scholar
Genth, F.A. (1875) Mineralogy of Pennsylvania. Second Geological Survey, Pennsylvania, p. 120-B.Google Scholar
Greene-Kelly, R., 1953 The identification of montmorillonoids in clay Journal of Soil Science 4 233247 10.1111/j.1365-2389.1953.tb00657.x.CrossRefGoogle Scholar
Greene-Kelly, R., 1955 Dehydration of montmorillonite minerals Mineralogical Magazine 30 604615 10.1180/minmag.1955.030.228.06.CrossRefGoogle Scholar
Higashi, S. Miki, K. and Komarneni, S., 2002 Hydrothermal synthesis of Zn-smectites Clays and Clay Minerals 50 299305 10.1346/00098600260358058.CrossRefGoogle Scholar
Hofmann, U. and Klemen, R., 1950 Verlust des Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung Zeitschrift für Anorganische und Allgemeine Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Isaure, M.P. Manceau, A. Geoffroy, N. Laboudigue, A. Tamura, N. and Marcus, M., 2005 Zinc mobility and speciation in soil covered by contaminated dredged sediment using micrometer-scale and bulk-averaging X-ray fluorescence, absorption and diffraction techniques Geochimica et Cosmochimica Acta 69 11731198 10.1016/j.gca.2004.08.024.CrossRefGoogle Scholar
Jaynes, W.F. and Bigham, J.M., 1987 Charge reduction, octahedral charge, and lithium retention in heated, Li-saturated smectites Clays and Clay Minerals 35 440448 10.1346/CCMN.1987.0350604.CrossRefGoogle Scholar
Jaynes, W.F. Traina, S.J. Bigham, J.M. and Johnston, C.T., 1992 Preparation and characterization of reduced-charge hectorites Clays and Clay Minerals 40 397404 10.1346/CCMN.1992.0400404.CrossRefGoogle Scholar
Kloprogge, T. Komarneni, S. and Amonette, J., 1999 Synthesis of smectite clay minerals: a critical review Clays and Clay Minerals 47 529554 10.1346/CCMN.1999.0470501.CrossRefGoogle Scholar
Komadel, P. Madejová, J. and Bujdák, J., 2005 Preparation and properties of reduced-charge smectites — a review Clays and Clay Minerals 53 313334 10.1346/CCMN.2005.0530401.CrossRefGoogle Scholar
Kotochigova, S.A. and Zucker, D.S. (2005) X-ray Form Factor, Attenuation and Scattering Tables (version 2.1). (viewed by the author on 05/22/08). National Institute of Standards and Technology, Gaithersburg, Maryland. [Originally published as Chantler, C.T. (1995) Journal of Physical and Chemical Reference Data, 24, 71-643; and Chantler, C.T. (2000) Journal of Physical and Chemical Reference Data, 29, 597–1048.].Google Scholar
Leggett, G., 1978 Interaction of monomeric silicic acid with copper and zinc and chemical changes of the precipitates with aging Soil Science Society of America Journal 42 262268 10.2136/sssaj1978.03615995004200020011x.CrossRefGoogle Scholar
Meier, L.P. and Nüesch, R., 1999 The lower cation exchange capacity limit of montmorillonite Journal of Colloid and Interface Science 217 7785 10.1006/jcis.1999.6254.CrossRefGoogle ScholarPubMed
Mench, M.J. Manceau, A. Vangronsveld, J. Clusters, H. and Mocquot, B., 2000 Capacity of soil amendments in lowering the phytoavailability of sludge-borne zinc Agronomie 20 383397 10.1051/agro:2000135.CrossRefGoogle Scholar
Mizutani, T. Fukushima, Y. and Kamigaito, O., 1990 Mechanism of the copolymerization of silicic acid and metal ionsin aqueousmedia Bulletin of the Chemical Society of Japan 63 618619 10.1246/bcsj.63.618.CrossRefGoogle Scholar
Petit, S., 1990 Etude cristallochimique de kaolinites ferrifères et cuprifèresde synthèse (150–250°C) France Université de Poitiers 238 pp.Google Scholar
Petit, S. and Kloprogge, J.T., 2005 Crystal-chemistry of talcs: a NIR and MIR spectroscopic approach The Application of Vibrational Spectroscopy to Clay Minerals and Layered Double Hydroxides Aurora, Colorado The Clay Minerals Society 4164.Google Scholar
Petit, S. Righi, D. Madejová, J. and Decarreau, A., 1998 Layer charge of smectites: quantification and localization using infrared spectroscopy Clay Minerals 33 579591 10.1180/claymin.1998.033.4.05.CrossRefGoogle Scholar
Petit, S. Righi, D. and Madejová, J., 2006 Infrared spectroscopy of NH4+\$\end{document}-bearing and saturated clay minerals: A review of the study of layer charge Applied Clay Science 34 2230 10.1016/j.clay.2006.02.007.Google Scholar
Polyak, V.J. and Güven, N., 2000 Authigenesis of trioctahedral smectite in magnesium-rich carbonate speleothems in Carlsbad cavern and other caves of the Guadalupe mountains, New Mexico Clays and Clay Minerals 48 317321 10.1346/CCMN.2000.0480302.CrossRefGoogle Scholar
Purnell, J.H. and Lu, Y., 1993 Ionic migration and charge reduction in Ni2+, Co2+, and Zn2+-exchanged Texas montmorillonite Catalysis Letters 18 235241 10.1007/BF00769442.CrossRefGoogle Scholar
Righi, D. Petit, S. and Bouchet, A., 1993 Characterization of hydroxy-interlayered vermiculite and illite/smectite interstratified minerals from the weathering of chlorite in a cryorthod Clays and Clay Minerals 41 484495 10.1346/CCMN.1993.0410409.CrossRefGoogle Scholar
Righi, D. Terribile, F. and Petit, S., 1998 Pedogenetic formation of high-charge beidellite in a vertisol of Sardinia (Italy) Clays and Clay Minerals 46 167177 10.1346/CCMN.1998.0460207.CrossRefGoogle Scholar
Ross, C.S., 1946 Sauconite — a clay mineral of the montmorillonite group American Mineralogist 31 411424.Google Scholar
Roy, D.M. and Mumpton, F.A., 1956 Stability of minerals in the system Zn-SiO2-H2O Economic Geology 51 432443 10.2113/gsecongeo.51.5.432.CrossRefGoogle Scholar
Schlegel, M. and Manceau, A., 2006 Evidence for the nucleation and epitaxial growth of Zn phyllosilicate on montmorillonite Geochimica et Cosmochimica Acta 70 901917 10.1016/j.gca.2005.10.021.CrossRefGoogle Scholar
Schlegel, M. Manceau, A. Charlet, L. Chateigner, D. and Hazemann, J.-L., 2001 Sorption of metal ions on clay minerals. III. Nucleation and epitaxial growth of Zn phyllosilicate on the edges of hectorite Geochimica et Cosmochimica Acta 65 41554170 10.1016/S0016-7037(01)00700-1.CrossRefGoogle Scholar
Tiller, K.G. and Pickering, J.G., 1974 The synthesis of zinc silicates at 20°C and atmospheric pressure Clays and Clay Minerals 22 409416 10.1346/CCMN.1974.0220507.CrossRefGoogle Scholar
Usui, K., Sato, T., and Tanaka, M. (1987) Process for the preparation of a synthetic crystalline zinc silicate mineral having a sauconite, willemite or hemimorphite structure. US patent 4681749. Date issued: 21 July.Google Scholar
Yeniyol, M., 2007 Characterization of a Mg-rich and low-charge saponite from the Neogene lacustrine basin of Eskisehir, Turkey Clay Minerals 42 541548 10.1180/claymin.2007.042.4.10.CrossRefGoogle Scholar