Hostname: page-component-cd9895bd7-hc48f Total loading time: 0 Render date: 2025-01-03T15:14:21.144Z Has data issue: false hasContentIssue false

Transformation of Montmorillonite to Nickel-Chlorite

Published online by Cambridge University Press:  01 July 2024

G. C. Gupta*
Affiliation:
University Chemistry Department, Roorkee, India
W. U. Malik
Affiliation:
University Chemistry Department, Roorkee, India
*
*Present address: School of Engineering, University of Mississippi, University, Miss., 39216.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Nickel-chlorite has been obtained by the co-precipitation of nickelous hydrous oxide and montmorillonite at an OH/Ni ratio of 2.0. Chemical analysis shows that 16 me of Ni is fixed per gram of clay. System without any free nickelous hydrous oxide is quite stable up to an investigated period of 6 months, shows impedence to collapse on heating to 550°C, and no expansion of 001 spacing on glycerol treatment.

Different properties studied (X-ray diffraction analysis, thermal [D.T.A. and T.G.A.] data, i.r. absorption analysis, Polarographic reduction behavior and cation exchange capacity measurements) confirm the complete transformation of montmorillonite to nickel-chlorite.

“Seeding” of the hydroxide out of the “fixed” interlayer positions takes place on ageing the sample with free nickelous hydrous oxide. No montmorillonite could be detected by X-ray diffraction analysis in spite of this backward reaction.

Резюме

Резюме

Никелевый хлорит был получен путем соосаждения гидроокиси никеля и монтмо-риллонита при отношении ОН: Ni = 2:1. По данным химического анализа, 1 г. глины поглощал 16 миллиэквивалентов никеля. Полученный продукт, не содержащий свободной гидроокиси никеля, является совершенно стабильным в течение 6 месяцев (длительность исследования), обнаруживает признаки начинающегося распада при нагревании до 550°С, при его обработке глицерином значение расстояния 001 не увеличивается.

Результаты рентгеновского изучения, термического анализа (ДТА, ТГА), инфракрасной спектроскопии, полярографической редукции (определение обменного никеля) и изучения способности к обмену катионов подтверждают полное превращение монтмориллонита в никелевый хлорит.

При старении осадка, содержащего свободную гидроокись никеля, последняя обособляется и оказывается не связанной с определенными межслоевыми позициями; несмотря на этот обратный процесс, в том же веществе монтмориллонит рентгеновским методом не обнаружен.

Type
Research Article
Copyright
Copyright © 1969, The Clay Minerals Society

References

Ahlrichs, J. L. (1968) Hydroxyl stretching frequencies of synthetic Ni-, Al-, and Mg-hydroxy interlayers in expanding clays: Clays and Clay Minerals 16, 6372.CrossRefGoogle Scholar
Barnishel, R. I. and Rich, C. I. (1965) Gibbsite, bayerite and nordstrandite formation as affected by anions, pH and mineral surfaces: Soil Sci. Soc. Am. Proc. 29, 531534.CrossRefGoogle Scholar
Bishui, B. M. and Prasad, J. (1960). I.R. spectra of some clay minerals and related structures; Bull. Central Glass and Ceram. Res. Inst. Calcutta (India) 7(3), 97109.Google Scholar
Brydon, J. E., Clark, J. S. and Osborne, V. (1961) Dioctahedral chlorites: Can. Mineralogist 6, 595609.Google Scholar
Brydon, J. E. and Kodama, H. (1966) The nature of aluminum hydroxide montmorillonite complex: Am. Mineralogist 51, 875889.Google Scholar
de Villiers, J. M. and Jackson, M. L. (1967) Aluminous Chlorite origin of pH-dependent cation exchange capacity variations: Soil Sci. Soc. Am. Proc. 31, 614626.Google Scholar
Feitknecht, W. and Berger, A. (1942) Formation of Nickel and Cobalt layer lattice silicates: Helv. Chim. Acta. 25, 15431547.CrossRefGoogle Scholar
Fripiat, J.J. (1964) Surface properties of alumino-silicates: Clays and Clay Minerals, 327358.CrossRefGoogle Scholar
Gupta, G. C. and Malik, W. U. (1968) Thermal analysis of synthesized chlorite structures: Chem. Ind. (London) 11581159.Google Scholar
Gupta, G. C. and Malik, W. U. (1968) Fixation of hydroxy-aluminum polymorph by montmorillonite: (under communication).Google Scholar
Hsu, P. H. (1968) Heterogenity of montmorillonite surface and its effect on the nature of hydroxy-aluminum interlayers. Clays and Clay Minerals 16, 303312.CrossRefGoogle Scholar
Hsu, P. H. (1968) Heterogenity of montmorillonite surface aluminum polymers by vermiculite: Soil Sci. Soc. Am. Proc. 28, 763769.CrossRefGoogle Scholar
Kolthoff, I. M. and Ungane, J. J. (1952) Polarography: Interscience, New York .Google Scholar
McMurchy, R. C. (1934) The Structure of Chlorites: Z. Krist. 88, 420432.Google Scholar
Malik, W. U. and Gupta, G. C. (1968) Polarographic reduction behavior of clay minerals: Talanta 15, 3945.CrossRefGoogle ScholarPubMed
Malik, W. U. and Gupta, G. C. (1968) Suitability of Polarographie method for determining the cation exchange capacity of modified clay structures: Indian J. Tech. 6, 126127.Google Scholar
Roy, D. M. and Roy, R. (1954) Formation and properties of synthetic serpentines and related silicate minerals: Am. Mineralogist 39, 957975.Google Scholar
Shen, M. J. and Rich, C. I. (1962) Aluminum fixation in montmorillonite: Soil Sci. Soc. Am. Proc: 26, 3336.CrossRefGoogle Scholar
Slaughter, M. and Milne, I. H. (1960) The formation of chlorite-like structures from montmorillonite: Clays and Clay Minerals 5, 114124.Google Scholar
Spangenberg, K. (1938) Hydrated nickel silicates: Naturwissenschaften 26, 578579.CrossRefGoogle Scholar
Turner, R. C. and Brydon, J. E. (1967) Effect of length of time of reaction on some properties of suspensions of Arizona bentonite, illite and kaolinite in which aluminum hydroxide is precipitated: Soil Sci. 103, 111117.CrossRefGoogle Scholar
Wiesmiller, R. A., Ahlrichs, J. L. and White, J. L. (1967) Infrared Studies of hydroxy-aluminum interlayer material: Soil Sci. Soc. Am. Proc. 31, 459463.CrossRefGoogle Scholar