Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T17:19:16.695Z Has data issue: false hasContentIssue false

Ti-Pillared Clays: Synthesis and General Characterization

Published online by Cambridge University Press:  01 January 2024

Amaya Romero*
Affiliation:
Departamento de Ingeniería Química, Facultad de Químicas/Escuela Universitaría de Ingeniería Técnica Agrícola, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real, Spain
Fernando Dorado
Affiliation:
Departamento de Ingeniería Química, Facultad de Químicas/Escuela Universitaría de Ingeniería Técnica Agrícola, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real, Spain
Isaac Asencio
Affiliation:
Departamento de Ingeniería Química, Facultad de Químicas/Escuela Universitaría de Ingeniería Técnica Agrícola, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real, Spain
Prado Belen García
Affiliation:
Departamento de Ingeniería Química, Facultad de Químicas/Escuela Universitaría de Ingeniería Técnica Agrícola, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real, Spain
José Luis Valverde
Affiliation:
Departamento de Ingeniería Química, Facultad de Químicas/Escuela Universitaría de Ingeniería Técnica Agrícola, Universidad de Castilla-La Mancha, Campus Universitario s/n, 13004 Ciudad Real, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

This review is concerned with the synthesis and physical-chemical characteristics of a specific type of modified clay material: Ti-PILCs. The two general synthetic procedures and the main problems associated with the scale-up synthesis of these pillared materials are discussed in detail. The general characteristics of Ti-PILCs in terms of basal spacing, pillar homogeneity, surface area, microporosity, mesoporosity, pore size and distribution, thermal resistance and acidity are discussed in depth. Likewise, the most important synthesis parameters that have a clear and marked influence on the final characteristics of the materials are summarized.

Type
Research Article
Copyright
Copyright © 2006, The Clay Minerals Society

References

Adams, J.M., (1987) Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts — Areview Applied Clay Science 2 309342.CrossRefGoogle Scholar
Arfaoui, J. Khalfallah Boudali, L. and Ghorbel, A., (2005) Vanadia-doped titanium-pillared clay: Preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol Catalysis Communications 7 8690.CrossRefGoogle Scholar
Arfaoui, S. Srasraa, E. and Frini-Srasra, N., (2005) Application of clays to treatment of tannery sewages Desalination 185 419426.CrossRefGoogle Scholar
Arfaoui, J. Khalfallah Boudali, L. and Ghorbel, A., (2006) Vanadia-doped titanium-pillared clay: preparation, characterization and reactivity in the epoxidation of allylic alcohol (E)-2-hexen-1-ol Catalysis Communications 7 8690.CrossRefGoogle Scholar
Baes, C.F. and Mesmer, R.E., (1976) The Hydrolysis of Cations New York Wiley.Google Scholar
Bagshaw, S.A. and Cooney, R.P., (1993) FTIR surface site analysis of pillared clays using pyridine probe species Chemistry of Materials 5 11011109.CrossRefGoogle Scholar
Bahranowski, K. Janas, J. Machej, T. Serwicka, E.M. and Vartikian, L.A., (1997) Vanadium-doped titania-pillared montmorillonite clay as a catalyst for selective catalytic reduction of NO by ammonia Clay Minerals 32 665672.CrossRefGoogle Scholar
Bahranowski, K. Gąsior, M. Kielski, A. Podobński, J. Serwicka, E.M. Vartikian, L.A. and Wodnicka, K., (1998) Physico-chemical characterization and catalytic properties of copper-doped alumina-pillared montmorillonites Clays and Clay Minerals 46 98102.CrossRefGoogle Scholar
Bahranowski, K. Kielski, A. Serwicka, E.M. Wisla-Walsh, E. and Wodnicka, K., (1998) Structure and texture of copper-doped alumina-pillared montmorillonites Mineralogia Polonica 29 5565.Google Scholar
Bahranowski, K. Gąsior, M. Kielski, A. Podobiński, J. Serwicka, E.M. Vartikian, L.A. and Wodnicka, K., (1999) Cu-doped alumina-pillared montmorillonites as catalysts for oxidation of toluene and xylenes with hydrogen peroxide Clay Minerals 34 7986.CrossRefGoogle Scholar
Bernier, A. Amaiai, L.F. and Grange, P., (1991) Synthesis and characterization of titanium pillared clays. Influence of the temperature of preparation Applied Catalysis 77 269281.CrossRefGoogle Scholar
Bovey, J. Kooli, F. and Jones, W., (1996) Preparation and characterization of Ti-pillared acid-activated clay catalysts Clays and Clay Minerals 31 501506.CrossRefGoogle Scholar
Brindley, G.W. and Sempels, R.E., (1977) Preparation and properties of some hydroxy-aluminum beidellites Clays and Clay Minerals 12 229237.CrossRefGoogle Scholar
Burch, R. (1988)(editor) () Pillared Clays. Catalysis Today, 2, 501506.Google Scholar
Burch, R. and Warburton, C.I., (1986) Zr-containing pillared interlayer clays: I. Preparation and structural characterization Journal of Catalysis 97 503510.CrossRefGoogle Scholar
Cañizares, P. Valverde, J.L. Sun Kou, M.R. and Molina, C.B., (1999) Synthesis and characterization of PILCs with single and mixed oxide pillars prepared from two different bentonites. A comparative study Microporous and Mesoporous Materials 29 267281.CrossRefGoogle Scholar
Chae, H.J. Nam, I.S. Ham, S.W. and Hong, S.B., (2004) Characteristics of vanadia on the surface of V2O5/Ti-PILC catalyst for the reduction of NOx by NH3 Applied Catalysis B: Environmental 53 117126.CrossRefGoogle Scholar
Cheng, L.S. Yang, R.T. and Chen, J., (1996) Iron oxide and chromia supported on titania-pillared clay for selective catalytic reduction of nitric oxide with ammonia Journal of Catalysis 164 7081.CrossRefGoogle Scholar
Cheng, S., (1999) From layer compounds to catalytic materials Catalysis Today 49 303312.CrossRefGoogle Scholar
Chevalier, S. Franck, R. Suquet, H. Lambert, J.F. and Barthomeuf, D., (1994) Al-pillared saponites Journal of the Chemical Society 90 667674.Google Scholar
Chmielarz, L. Kustrowski, P. Zbroja, M. Gil-Knap, B. Datka, J. and Dziembaj, R., (2004) SCR of NO by NH3 on alumina or titania pillared montmorillonite modified with Cu or Co. Part II. Temperature programmed studies Applied Catalysis B: Environmental 53 4761.CrossRefGoogle Scholar
Chmielarz, L. Kustrowski, P. Zbroja, M. Lasocha, W. and Dziembaj, R., (2004) Selective reduction of NO with NH3 over pillared clays modified with transition metals Catalysis Today 90 4349.CrossRefGoogle Scholar
Choudary, B.M., Valli, V.L.K. and Durga Prasad, A. (1990a) A new vanadium-pillared montmorillonite catalyst for the regioselective epoxidation of allylic alcohols. Journal of the Chemical Society, 11861192.CrossRefGoogle Scholar
Choudary, B.M. Valli, V.L.K. and Durga Prassad, A., (1990) An improved asymmetric epoxidation of allyl alcohols using titanium-pillared montmorillonite as a heterogeneous catalyst Journal of the Chemical Society, Chemical Communications 17 11861187.CrossRefGoogle Scholar
Corma, A., (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis Chemical Review 97 23732419.CrossRefGoogle ScholarPubMed
De Stefanis, A. and Tomlinson, A.A.G. (2006) Towards designing pillared clays for catalysis. Catalysis Today (in press).CrossRefGoogle Scholar
De Stefanis, A. Perez, G. and Tomlinson, A.A.G., (1994) Pillared layered structures vs. zeolites as sorbents and catalysts. Part 1.—Hydrocarbon separations on two alumina-pillared clays and an α-tin phosphate analogue Journal of Materials Chemistry 4 959964.CrossRefGoogle Scholar
Del Castillo, H.L., (1993) Preparation and catalytic activity of titanium pillared montmorillonite Applied Catalysis A: General 103 2324.CrossRefGoogle Scholar
Del Castillo, H.L. Gil, A. and Grange, P., (1996) Hydroxylation of phenol on titanium pillared montmorillonite Clays and Clay Minerals 44 706709.CrossRefGoogle Scholar
Del Castillo, H.L. Gil, A. and Grange, P., (1997) Influence of the nature of titanium alkoxide and of the acid of hydrolysis in the preparation of titanium pillared montmorillonites Journal of Physics and Chemistry of Solids 58 10531062.CrossRefGoogle Scholar
Einaga, H. (1979) Hydrolysis of titanium(IV) in aqueous (Na,H)Cl solutions. Journal of the Chemical Society, Dalton Transactions, 19171919.CrossRefGoogle Scholar
Fantan-Torres, E.M. Sham, E. and Grange, P., (1992) Pillared clays: preparation and characterization of zirconium pillared montmorillonite Catalysis Today 15 515526.CrossRefGoogle Scholar
Fetter, G. Heredia, G. Velazquez, L.A. Maubert, A.M. and Bosch, P., (1997) Synthesis of aluminum-pillared montmorillonites using highly concentrated clay suspensions Applied Catalysis A: General 162 4145.CrossRefGoogle Scholar
Fetter, G. Hernandez, V. Rodriguez, V. Valenzuela, M.A. Lara, V.H. and Bosch, P., (2003) Effect of microwave irradiation time on the synthesis of zirconia-pillared clays Materials Letters 57 12201223.CrossRefGoogle Scholar
Figueras, F., (1988) Pillared clays as catalysts Catalysis Reviews — Science and Engineering 30 457499.CrossRefGoogle Scholar
Gabriel, C. Gabriel, S. Grant, E.H. Halstead, B.S.J. and Mingos, D.M.P., (1998) Dielectric parameters relevant to microwave dielectric heating Chemical Society Reviews 27 213223.CrossRefGoogle Scholar
Ge, Z. Li, D. and Pinnavaia, T.J., (1994) Preparation of alumina-pillared montmorillonites with high thermal stability, regular microporosity and Lewis-Brönsted acidity Microporous and Mesoporous Materials 3 281292.Google Scholar
Gil, A. and Gandia, L.M., (2000) Recent advances in the synthesis and catalytic applications of pillared clays Catalysis Review — Science and Engineering 42 145212.CrossRefGoogle Scholar
Gil, A. Diaz, A. Montes, M. and Acosta, D.R., (1994) Characterization of the microporosity of pillared clays by nitrogen adsorption. Application of the Horvath-Kawazoe approach Journal of Materials Science 29 49274932.CrossRefGoogle Scholar
Gil, A. Del Castillo, H.L. Masson, J. Court, J. and Grange, P., (1996) Selective dehydration of 1-phenylethanol to 3-oxa-2,4-diphenylpentane on titanium pillared montmorillonite Journal of Molecular Catalysis A: Chemical 107 185190.CrossRefGoogle Scholar
Guan, J., Min, E. and Yu, Z. (1986) European patent 88300815.Google Scholar
Hutson, N.D., (1999) Control of microporosity of Al2O3-pillared clays: effect of pH, calcination temperature and clay cation exchange capacity Microporous and Mesoporous Materials 28 447459.CrossRefGoogle Scholar
Hutson, N.D. Gualdoni, D.J. and Yang, R.T., (1998) Synthesis and characterization of the microporosity of ion-exchanged Al2O3 pillared clays Chemistry of Materials 10 37073715.CrossRefGoogle Scholar
Kaloidas, V. Koufopanos, C.A. Gangas, N.H. and Papayannakos, N.G., (1995) Scale-up studies for the preparation of pillared layered clays at 1 kg per batch level Microporous Materials 5 97106.CrossRefGoogle Scholar
Kato, A. Matsuda, S. Nakajima, F. Imanari, M. and Watanabe, Y., (1981) Reduction of nitric oxide with ammonia on iron oxide-titanium oxide catalyst Journal of Physical Chemistry 85 17101713.CrossRefGoogle Scholar
Khalfallah-Boudali, L. Ghorbel, A. Tichit, D. Chiche, B. Dutartre, R. and Figueras, F., (1994) Synthesis and characterization of titanium-pillared montmorillonites Microporous Mesoporous Materials 2 537541.Google Scholar
Khalfallah-Boudali, L. Ghorbel, A. Figueras, F. Pinel, C., Corma, A. Melo, F.V. Mendioroz, S. and Fiero, J.L.G., (2000) Characterization and catalytic properties of titanium pillared clays in the epoxidation of allylic alcohols 12th International Congress on Catalysis Amsterdam Elsevier Science B.V. 16431648.CrossRefGoogle Scholar
Khalfallah-Boudali, L. Ghorbel, A. Grange, P. and Figueras, F., (2005) Selective catalytic reduction of NO with ammonia over V2O5 supported sulphated titanium-pillared clay catalysts: influence of V2O5 content Applied Catalysis B: Environmental 59 105111.CrossRefGoogle Scholar
Kitayama, Y. Kodama, T. Abe, M. Shimotsuma, H. and Matsuda, Y., (1998) Synthesis of titania pillared saponite in aqueous solution of acetic acid Journal of Porous Materials 5 121126.CrossRefGoogle Scholar
Kloprogge, J.T., (1998) Synthesis of smectites and porous pillared clay catalysts: A review Journal of Porous Materials 5 541.CrossRefGoogle Scholar
Koch, D., Kesore, K. and Tomlinson, A.A.G. (2004) World Patent WO 2004/030817 (to IKO-Erbsloh).Google Scholar
Kooli, F. Bovey, J. and Jones, W., (1997) Dependence of the properties of titanium-pillared clays on the host matrix: a comparison of montmorillonite, saponite and rectorite pillared materials Journal of Materials Chemistry 7 153158.CrossRefGoogle Scholar
Kostoglod, N.Y. Sychev, M.V. Prikhod’ko, R.V. Astrelin, I.M. Stepanenko, A.V. and Rozwadowski, M., (1998) Porous structure of pillared clays II. Montmorillonite pillared with titanium dioxide Kinetics and Catalysis 39 547553.Google Scholar
Kurian, M. and Sugunan, S., (2005) Characterisation of the acid-base properties of pillared montmorillonites Microporous Mesoporous Materials 83 2534.CrossRefGoogle Scholar
Lahav, N. Shani, U. and Shabtai, J., (1978) Cross-linked smectites. I: Preparation and properties of some hydroxyaluminum montmorillonite Clays and Clay Minerals 26 107115.CrossRefGoogle Scholar
Li, W. Sirilumpen, M. and Yang, R.T., (1997) Selective catalytic reduction of nitric oxide by ethylene in the presence of oxygen over Cu2+ ion-exchanged pillared clays Applied Catalysis B: Environmental 11 347363.CrossRefGoogle Scholar
Li, Z. Leo, K. and Flytzani-Stephanopoulos, M., (1997) Selective Catalytic Reduction of Nitric Oxide by Methane over Cerium and Silver Exchanged ZSM-5 Catalysts Fall Meeting of the Catalysis Society of New England Massachusetts Worcester.Google Scholar
Lin, J.-T. Jong, S.-J. and Cheng, S., (1993) A new method for preparing microporous titanium pillared clays Microporous Materials 1 287290.CrossRefGoogle Scholar
Maes, N. Heylen, I. Cool, P. and Vansant, E.F., (1997) The relation between the synthesis of pillared clays and their resulting porosity Applied Clay Science 12 4360.CrossRefGoogle Scholar
Malla, P. Yamanaka, S. and Komarneni, S., (1989) Unusual water vapor adsorption behaviour of montmorillonite pillared with ceramic oxides Solid State Ionics 32/33 354362.CrossRefGoogle Scholar
Martinez-Ortiz, M.J. Fetter, G. Domnguez, J.M. Melo-Banda, J.A. and Ramos-Gomez, R., (2003) Catalytic hydro-treating of heavy vacuum gas oil on Al- and Ti-pillared clays prepared by conventional and microwave irradiation methods Microporous and Mesoporous Materials 58 7380.CrossRefGoogle Scholar
Matsuda, T. Asanuma, E. and Kikuchi, E., (1988) Effect of high-temperature treatment on the activity of montmorillonite pillared by alumina in the conversion of 1,2,4-trimethylbenzene Applied Catalysis 38 289299.CrossRefGoogle Scholar
Mogyorosi, K. Deékaány, I. and Fendler, J.H., (2003) Preparation and characterization of clay mineral intercalated titanium dioxide nanoparticles Langmuir 19 29382946.CrossRefGoogle Scholar
Molina, R. Vieira-Coelho, A. and Poncelet, G., (1992) Hydroxy-Al pillaring of concentrated clay suspensions Clays and Clay Minerals 40 480482.CrossRefGoogle Scholar
Molina, R. Schutz, A. and Poncelet, G., (1994) Transformation of m-xylene over Al-pillared clays and ultrastable zeolite Y Journal of Catalysis 145 7985.CrossRefGoogle Scholar
Mokaya, R. and Jones, W., (1995) Pillared clays and pillared acid-activated clays: A comparative study of physical, acidic and catalytic properties Journal of Catalysis 153 76–58.CrossRefGoogle Scholar
Monsef-Mirzai, P. Kavanagh, D.M. Bodman, S. Lange, S. and McWhinnie, W.R., (1999) Microwave enhanced ion exchange of cationic and anionic clays Journal of Microwave Power and Electromagnetic Energy 34 216220.CrossRefGoogle ScholarPubMed
Moreno, S. Sun Kou, R. and Poncelet, G., (1996) Hydroconversion of heptane over Pt/Al-pillared montmorillonites and saponites. A comparative study Journal of Catalysis 162 198208.CrossRefGoogle Scholar
Nabivanets, B.I. and Kudritskaya, L.N., (1967) A study on the polymerization of titanium(IV) in hydrochloric acid solutions Russian Journal of Inorganic Chemistry 12 616620.Google Scholar
Occelli, M.L. and Tindawa, R.L., (1983) Physicochemical properties of montmorillonite interlayered with cationic oxyaluminium pillars Clays and Clay Minerals 31 2228.CrossRefGoogle Scholar
Occelli, M.L. Innes, R.A. Hwu, F.S.S. and Hightower, J.W., (1985) Sorption and catalysis on sodium-montmorillonite interlayered with aluminum oxide clusters Applied Catalysis 14 6982.CrossRefGoogle Scholar
Ooka, C. Akita, S. Ohashi, Y. Horiuchi, T. Suzuki, K. Komai, S. Yoshida, H. and Hattori, T., (1999) Crystallization of hydrothermally treated TiO2 pillars in pillared montmorillonite for improvement of the photocatalytic activity Journal of Materials Chemistry 9 29432952.CrossRefGoogle Scholar
Ooka, C. Yoshida, H. Horio, M. Suzuki, K. and Hattori, T., (2003) Adsorptive and photocatalytic performance of TiO2 pillared montmorillonite in degradation of endocrine disruptors having different hydrophobicity Applied Catalysis B: Environmental 41 313321.CrossRefGoogle Scholar
Ooka, C. Yoshida, H. Suzuki, K. and Hattori, T., (2004) Effect of surface hydrophobicity of TiO2-pillared clay on adsorption and photocatalysis of gaseous molecules in air Applied Catalysis A: General 260 4753.CrossRefGoogle Scholar
Perathoner, S. and Vaccari, A., (1997) Catalysts based on pillared interlayered clays for the selective reduction of NO Clay Minerals 32 123134.CrossRefGoogle Scholar
Perez-Zurita, M.J. Perez-Quintana, G.J. Hasblady, A.J. Maldonado, A. De Navarro, C.U. De Abrisqueta, A. and Scout, C.E., (2005) Synthesis of Al-PILC assisted by ultrasound: reducing the intercalation time and the amount of synthesis water Clays and Clay Minerals 53 528535.CrossRefGoogle Scholar
Pesquera, C. Gonzaález, F. Benito, I. Mendioroz, S. and Pajares, J.A., (1991) Synthesis and characterization of pillared montmorillonite catalysts Applied Catalysis 69 97104.CrossRefGoogle Scholar
Pinnavaia, T.J., (1983) Intercalated clay catalysts Nature 220 365369.Google ScholarPubMed
Purnell, J.H. and Michell, I.V., (1990) Current trends and applications Pillared Layered Structures London & New York Elsevier Applied Science 107112.Google Scholar
Ramos-Galvan, C.E. Sandoval-Robles, G. Castillo-Mares, A. and Domínguez, J.M., (1997) Comparison of catalytic properties of NiMo/Al2O3 with NiMo supported on Al-, Ti-pillared clays in HDS of residual oils Applied Catalysis A: General 150 3752.CrossRefGoogle Scholar
Rees, L.V.C., (1980) Proceedings of the 5th International Conference on Zeolites London Heyden 94101.Google Scholar
Sánchez, A. and Montes, M., (1998) Influence of the preparation parameters (particle size and aluminium concentration) on the textural properties of Al-pillared clays for a scale-up process Microporous and Mesoporous Materials 21 117125.CrossRefGoogle Scholar
Schoonheydt, R.A. and Leeman, H., (1992) Pillaring of saponite in concentrated medium Clay Minerals 27 249252.CrossRefGoogle Scholar
Serwicka, E.M. and Bahranowski, K., (2004) Environmental catalysis by tailored materials derived from layered minerals Catalysis Today 90 8592.CrossRefGoogle Scholar
Shimizu, K.I. Kaneko, T. Fujishima, T. Kodama, T. Yoshida, H. and Kitayama, Y., (2002) Selective oxidation of liquid hydrocarbons over photo-irradiated TiO2 pillared clays Applied Catalysis A: General 225 185191.CrossRefGoogle Scholar
Sing, K.S.W. Everett, D.H. Haul, R.A.W. Moscou, L. Pierotti, R.A. Rouguerol, J. and Siemieniewska, T., (1985) Reporting physisorption data for gas/solids systems with special reference to the determination of surface area and porosity Pure and Applied Chemistry 57 603619.CrossRefGoogle Scholar
Sterte, J., (1986) Synthesis and properties of titanium oxide cross-linked montmorillonite Clays and Clay Minerals 34 658664.CrossRefGoogle Scholar
Sterte, J., (1991) Preparation and properties of large-pore lanthanum-aluminum-pillared montmorillonite Clays and Clay Minerals 39 167173.CrossRefGoogle Scholar
Sterte, J.P. and Shabtai, J., (1987) Cross-linked smectites: V. Synthesis and properties of hydroxy-silico aluminum montmorillonites and fluorhectorites Clays and Clay Minerals 35 429439.CrossRefGoogle Scholar
Storaro, L. Lenarda, M. Canzerla, R. and Rinaldi, A., (1996) Preparation of hydroxy Al and Al/Fe pillared bentonites from concentrated clay suspensions Microporous Materials 6 5563.CrossRefGoogle Scholar
Storaro, L. Lenarda, M. Perissinotto, M. Lucchini, V. and Ganzerla, R., (1998) Hydroxy-Al pillaring of concentrated suspensions of smectite clays Microporous and Mesoporous Materials 20 317331.CrossRefGoogle Scholar
Sun, Shenmei Jiang, Yinshan Yu, Lixin Li, Fangfei Yang, Zhengwen Hou, Tianyi Hu, Daqiang and Xia, Maosheng, (2006) Enhanced photocatalytic activity of microwave treated TiO2 pillared montmorillonite Materials Chemistry and Physics 98 2-3 377381.CrossRefGoogle Scholar
Suzuki, K. Horio, M. and Mori, T., (1991) Preparation and properties of zirconia-pillared montmorillonite having different pillar populations Bulletin of the Chemical Society of Japan 64 732740.CrossRefGoogle Scholar
Sychev, M. Shubinaa, T. Rozwadowski, A.P.B. Sommene, V. De Beere, H.J. and Van Santene, R.A., (2000) Characterization of the microporosity of chromia and titania-pillared montmorillonites differing in pillar density Microporous and Mesoporous Materials 37 187200.CrossRefGoogle Scholar
Tichit, D., Fajula, F., Figueras, F., Bousquet, J. and Gueguen, C. (1985) Pp. 351386 in: Catalysis by Acids and Bases (Imelik, B., Naccache, C., Courduria, G., Taario, Y. Ben and Vedrine, J.C., editors). Studies in Surface Science and Catalysis, 20. Elsevier, Amsterdam.CrossRefGoogle Scholar
Toranzo, R. Vicente, M.A. Bañares-Muñoz, M.A. Gandía, L.M. and Gil, A., (1998) Pillaring of saponite with zirconium oligomers Microporous and Mesoporous Materials 24 173188.CrossRefGoogle Scholar
Valverde, J.L. Sánchez, P. Dorado, F. Molina, C.B. and Romero, A., (2002) Influence of the synthesis conditions on the preparation of titanium-pillared clays using hydrolyzed titanium ethoxide as the pillaring agent Microporous and Mesoporous Materials 54 155165.CrossRefGoogle Scholar
Valverde, J.L. Sánchez, P. Dorado, A.I. and Romero, A., (2003) Preparation and characterization of Ti-pillared clays using Ti alkoxides. Influence of the synthesis parameters Clays and Clay Minerals 51 4151.CrossRefGoogle Scholar
Van Olphen, H., (1963) An Introduction to Clay Colloid Chemistry 2 New York Wiley.Google Scholar
Vaughan, D.E.W., (1988) Pillared clays — a historical perspective Catalysis Today 2 187198.CrossRefGoogle Scholar
Vaughan, D.E.W., Lussier, R.J. and Magee, J.S. (1979) US Patent 4 176 090.Google Scholar
Vercauteren, S. Vayer, M. Van Damme, H. Luyten, J. Leysen, R. and Vansant, E.F., (1997) The preparation and characterization of ceramic membranes with a pillared clay top layer Colloids and Surfaces A: Physicochemical and Engineering Aspects 138 367373.CrossRefGoogle Scholar
Vicente, M.A. Bañares-Muñoz, M.A. Toranzo, R. Gandía, L.M. and Gil, A., (2001) Influence of the Ti precursor on the properties of Ti-Pillared smectites Clay Minerals 36 125138.CrossRefGoogle Scholar
Wahlbeck, P.C. and Gilles, P.W., (1966) Reinvestigation of the phase diagram for the system titanium-oxygen Journal of the American Ceramic Society 49 180183.CrossRefGoogle Scholar
Yamada, H. Nakazawa, H. Yoshioka, K. and Fujita, T., (1991) Smectites in the montmorillonite—beidellite series Clays and Clay Minerals 26 359369.CrossRefGoogle Scholar
Yamanaka, S. and Brindley, G.W., (1979) High surface area solids obtained by reaction of montmorillonite with zirconyl chloride Clays and Clay Minerals 27 119124.CrossRefGoogle Scholar
Yamanaka, S. and Hattori, M., (1988) Iron oxide pillared clay Catalysis Today 2 261270.CrossRefGoogle Scholar
Yamanaka, S. Nishihara, T. Hattori, M. and Suzuki, Y., (1987) Preparation and properties of titania-pillared clay Mathematics, Chemistry and Physics 17 87101.CrossRefGoogle Scholar
Yang, R.T. and Baksh, M.S.A., (1991) Pillared clays as a new class of adsorbents for gas separation AIChE Journal 37 679686.CrossRefGoogle Scholar
Yang, R.T. and Chen, J.P. (1995) US Patent 5 415 850.Google Scholar
Yang, R.T. Chen, J.P. Kikkinides, E.S. Cheng, L.S. and Cichanowicz, J.E., (1992) Pillared clays as superior catalysts for selective catalytic reduction of nitric oxide with ammonia Industrial Engineering Chemistry Resource 31 14401445.CrossRefGoogle Scholar
Yang, R.T. Tharappiwattananon, N. and Long, R.Q., (1998) Ion-exchanged pillared clays for selective catalytic reduction of NO by ethylene in the presence of oxygen Applied Catalysis B 19 289297.CrossRefGoogle Scholar
Yoda, S. Sakurai, Y. Endo, A. Miyata, T. Yanagishita, H. Otake, K. and Tsuchiya, T., (2004) Synthesis of titania-pillared montmorillonite via intercalation of titanium alkoxide dissolved in supercritical carbon dioxide Journal of Materials Chemistry 14 27632767.CrossRefGoogle Scholar
Yoneyama, H. Haga, S. and Yamanaka, S., (1989) Photocatalytic activities of microcrystalline TiO2 incorporated in sheet silicates clay Journal of Physical Chemistry 93 48334843.CrossRefGoogle Scholar
Zhu, H.Y. Gao, W.H. and Vansant, E.F., (1995) The porosity and water adsorption of alumina-pillared montmorillonite Journal of Colloid and Interface Science 171 377385.CrossRefGoogle Scholar