Hostname: page-component-cd9895bd7-mkpzs Total loading time: 0 Render date: 2024-12-23T07:22:57.127Z Has data issue: false hasContentIssue false

Thermal Transformation of Talc as Studied by Electron-Optical Methods

Published online by Cambridge University Press:  02 April 2024

Helena de Souza Santos
Affiliation:
Laboratório de Microscopia Eletrônica, Institute de Física Universidade de São Paulo, São Paulo, Brazil
Keiji Yada
Affiliation:
Institute for Scientific Measurements, Tohoku University, Sendai, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thermal decomposition of a fibrous talc was studied by transmission electron microscopy (TEM) and selected-area electron diffraction (SAD). Small changes in the lengths of a and b unit-cell parameters were noticeable at 500°C, but the talc laths did not change morphologically until 800°C. At this temperature striations began to appear in the TEM image, and the talc SAD reflections began to develop faint satellite streaks. At 900°C the striations appeared to be crystallites, and reflections of orthorhombic enstatite were noted. Both TEM and SAD evidence showed that the enstatite crystallites were formed in three orientations corresponding to the three pseudohexagonal a axes of the talc. Thus, triple superposition of the electron diffraction pattern at the three equivalent angles explains the high symmetry star-shaped pattern. At 1000° to 1100°C the enstatite crystallites were shorter and thicker, and the streaks in the SAD pattern were nearly absent. Above 1200°C only one orientation of the enstatite crystallites was found. Noncrystalline regions were also detected at 900°C and became progressively scarce at 1000° and 1100°C. They were not detected at 1200°C. At 1300°C cristobalite was detected in some SAD patterns. The crystallographic axes and unit-cell parameters of the talc and enstatite were also topotactically related as follows: at (5.3 Å)//ce (5.2 Å); bt (9.16 Å)//be (8.8 Å); d(001)t (18.84 Å)//ae (18.2 Å). These results are compatible with an inhomogeneous decomposition mechanism as proposed by earlier workers.

Resumo

Resumo

A decomposição térmica de um talco fibroso foi estudada por microscopia eletrônica de trans-missão (MET) e por difração eletrônica de área selecionada (SAD). Foram observadas ligeiras modificações nos comprimentos dos parâmetros da cela unitária aeba 500°C, mas as ripas de talco não apresentaram transformações morfológicas até 800°C, quando estriações começaram a aparecer nas micrografias e a desenvolver reflexões satélites em forma de traços muito tênues. A 900°C as estriações puderam ser caracterizadas corno cristalitos e começaram a aparecer reflexões de enstatita ortorrômbica. As evidências obtidas por MET e SAD mostraram que os cristalitos de enstatita foram formados em três orientações correspondentes aos três eixos a pseudohexagonais do talco; assim a tripla superposição do diagrama nos très ângulos equivalentes explica a alta simetria do diagrama em forma de estrela. Entre 1000° e 1100°C os cristalitos se tornaram mais curtos e mais grossos, e os traços no diagrama SAD quase desapareceram; acima de 1200°C apenas urna direção dos cristalitos de enstatita foi encontrada. Regiões não cristalinas foram detectadas a 900°C se tornando progressivamente mais raras entre 1000° e 1100°C e desaparecendo a 1200°C. A 1300°C pôde ser detectada a cristobalita em alguns diagramas de SAD. Os eixos cristalográficos e os parâmetros das celas unitárias do talco e da enstatita são relacionados corno se segue: at (5.3 Å)//ce (5.2 Å); bt (9.16 Å)//bt (8.8 Å); d(001)t (18.84 Å)//ae (18.2 Å). Os resultados do presente trabalho são compatíveis com um mecanismo de decomposição como aquele proposto por Taylor e por Brindley.

Type
Research Article
Copyright
Copyright © 1988, The Clay Minerals Society

References

Aumento, F., 1970 Serpentine mineralogy of ultrabasic in-trusives in Canada on the mid-Atlantic ridges Can. Geol. Surv. Pap. 69–53 24.Google Scholar
Ball, M. C. and Taylor, H. F. W., 1961 The dehydration of brucke Mineral. Mag. 32 754765.Google Scholar
Ball, M. C. and Taylor, H. F. W., 1963 The dehydration of chrysotile in air and under hydrothermal conditions Mineral. Mag. 33 467482.Google Scholar
Bapst, G. and Eberhart, J. P., 1970 Contribution à l’étude de la transformation talc-MgSiO3 Bull. Groupe Franç. Argiles 22 1723.CrossRefGoogle Scholar
Brindley, G. W., 1961 The role of crystal structure in the dehydration reactions of some layer-type minerals J. Min. Soc. Japan 5 217237.Google Scholar
Brindley, G. W., Rosenquist, I. Th. and Graff-Petersen, P., 1963 Role of crystal structure in solid state reactions of clays and related minerals Proc. Int. Clay Conf., Stockholm, Vol. I New York Pergamon Press 3744.Google Scholar
Brindley, G. W., 1963 Crystallographic aspects of some decomposition and recrystallization reactions Progress in Ceramic Science, Vol. 3 Oxford Pergamon Press 355.Google Scholar
Brindley, G. W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-Ray Identification London Mineralogical Society 405.CrossRefGoogle Scholar
Daw, J. D., Nicholson, P. S. and Embury, J. D., 1972 Inhomogeneous dehydroxylation of talc J. Amer. Ceram. Soc. 55 149151.CrossRefGoogle Scholar
Foster, W. R., 1951 High-temperature X-ray diffraction study of the polymorphism of MgSiO3 J. Amer. Ceram. Soc. 34 255259.CrossRefGoogle Scholar
Kedesdy, H., 1943 Electron microscope study of calcination and steatite Ber. Deutsch. Keram. Ges. 24 201233.Google Scholar
Mackenzie, R. C., 1957 The Differential Thermal Investigation of Clays London Mineralogical Society 177.Google Scholar
Nakahira, M., Kato, T. and Bradley, W. F., 1964 Thermal transformation of pyrophyllite and talc as revealed by X-ray and electron diffraction studies Clays and Clay Minerals, Proc. 12th Natl. Conf., Atlanta, Georgia, 1963 New York Pergamon Press 2127.Google Scholar
Rayner, J. A. and Brown, G., 1973 The crystal structure of talc Clays & Clay Minerals 21 103114.CrossRefGoogle Scholar
Taylor, H. F. W., 1962 Homogeneous and inhomogeneous mechanisms in the dehydroxylation of minerals Clay Min. Bull. 5 4555.CrossRefGoogle Scholar
Yada, K. and Kawakatsu, H., 1976 Magnetic objective lens with small bores J. Electronmicros. (Japan) 25 19.Google Scholar