Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2024-12-24T16:58:40.795Z Has data issue: false hasContentIssue false

Thermal Behavior of Natural and Cation-Exchanged Clinoptilolite from Sardinia (Italy)

Published online by Cambridge University Press:  01 January 2024

Alessio Langella*
Affiliation:
Dipartimento di Studi Geologici ed Ambientali, Via Port’Arsa 11, 82100 Benevento, Italy
Michele Pansini
Affiliation:
Laboratorio Materiali del Dipartimento di Meccanica, Strutture, Ambiente e Territorio dell’Universita di Cassino, Via Di Biasio 43, 03043 Cassino (FR), Italy
Guido Cerri
Affiliation:
Istituto di Scienze Geologico-Mineralogiche dell’Università di Sassari, Corso Angioj 10, 07100 Sassari, Italy
Piergiulio Cappelletti
Affiliation:
Dipartimento di Scienze della Terra dell’Università Federico II, Via Mezzocannone 8, 80134 Naples, Italy
Maurizio de’Gennaro
Affiliation:
Dipartimento di Scienze della Terra dell’Università Federico II, Via Mezzocannone 8, 80134 Naples, Italy
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The thermal behavior of two clinoptilolites from an epiclastic and a pyroclastic deposit of central-northern Sardinia and of their exchanged forms (Li, Na, K, Cs, Mg, Ca, Sr and ammonium) were investigated by differential thermal analysis and thermogravimetry up to 1000°C. Their thermal stability was studied by evaluating the residual crystallinity (expressed as rehydration capacity) after 2 h thermal treatments at 450, 600 and 900°C. The water loss at 1000°C was linearly related to the radius (r) and the charge (z) of the exchangeable cations by the equations r2/z or r3/z, which are proportional to the inverse of the charge density over the surface or to the charge density over the volume of the cations.

The cation composition plays a crucial role in determining the thermal behavior of clinoptilolite. The presence of cations such as Cs or K, which have low surface or volume charge densities, was found to increase the thermal resistance. In particular, the crystallinity of Cs- and K-exchanged forms of both clinoptilolites was not affected by thermal treatment at 450°C and was only slightly reduced by thermal treatment at 600°C.

Predicting the thermal behavior of natural and cation-exchanged forms of these clinoptilolites can provide useful information for possible applications in catalysis, in the case of high thermal stability, or for thermal transformation into ceramics or lightweight aggregates.

Type
Research Article
Copyright
Copyright © 2003, The Clay Minerals Society

References

Alietti, A., (1972) Polymorphism and crystal-chemistry of heulandites and clinoptilolites American Mineralogist 57 14481462.Google Scholar
Alietti, A. Gottardi, G. and Poppi, L., (1974) The heat behavior of the cation exchanged zeolites with heulandite structure Tschermaks Mineralogische und Petrographische Mitteilungen 21 291298 10.1007/BF01081037.Google Scholar
Alietti, A. Brigatti, M.F. and Poppi, L., (1975) Il Comportamento Termodifferenziale e Termoponderale dei Minerali del Gruppo Dell’Heulandite Rendiconti della Società Italiana di Mineralogia e Petrologia 31 613630.Google Scholar
Alietti, A. Brigatti, M.F. and Poppi, L., (1977) Natural Ca-rich clinoptilolites (heulandites of group 3): new data and review Neues Jahrbuch für Mineralogie Monatshefte 493501.Google Scholar
Ames, L.L. Jr., (1961) Cation sieve properties of the open zeolites chabazite, mordenite, erionite and clinoptilolite American Mineralogist 46 11201131.Google Scholar
Armbruster, T., (1993) Dehydration mechanism of clinoptilolite and heulandite: single-crystal X-ray study of Na-poor, Ca-, K-, Mg-rich clinoptilolite at 100 K American Mineralogist 78 260264.Google Scholar
Bish, D.L., (1984) Effects of the exchangeable cation composition on the thermal expansion/contraction of clinoptilolite Clays and Clay Minerals 32 444452 10.1346/CCMN.1984.0320602.Google Scholar
Bish, D.L., Kalló, D. and Sherry, H.S., (1988) Effect of composition on the dehydration behavior of clinoptilolite and heulandite Occurrence, Properties and Utilization of Natural Zeolites Bud apest Akademiai Kiadó 565576.Google Scholar
Bish, D.L. Boak, J.M., Bish, D.L. and Ming, D.W., (2002) Clinoptilolite-heulandite nomenclature Natural Zeolites: Occurrence, Properties, and Applications Washington, D.C. Mineralogical Society of America 207216.Google Scholar
Boles, J.R., (1972) Composition, optical properties, cell dimensions and thermal stability of some heulandite group zeolites American Mineralogist 57 14631493.Google Scholar
Breck, D.W., (1974) Zeolite Molecular Sieves New York J. Wiley & Sons 475.Google Scholar
Cappelletti, P. Langella, A. and Cruciani, G., (1999) Crystal-chemistry and synchrotron Rietveld refinement of two different clinoptilolites from volcanoclastites of Northwestern Sardinia European Journal of Mineralogy 11 10511060 10.1127/ejm/11/6/1051.Google Scholar
Cappelletti, P. de’ Gennaro, M. Langella, A. Cerri, G., Rammlmair, D. Mederer, J. Oberthur, T.h. Heimann, R.B. and Pentinghaus, H., (2000) Technological features of clinoptilolite-rich materials from Logudoro (Northern Sardinia, Italy) Applied Mineralogy in Research, Economy, Technology, Ecology and Culture Rotterdam Balkema 111114.Google Scholar
Cerri, G. and Oggiano, G., (2002) The zeolitized epiclastics of eastern Logudoro: a stratigraphic marker within the volcano-sedimentary succession of northern-central Sardinia (Italy) Bollettino della Societa’ Geologica Italiana 121 310.Google Scholar
Cerri, G. Cappelletti, P. Langella, A. and de’ Gennaro, M., (2001) Zeolitization of Oligo-Miocene volcaniclastic rocks from Logudoro (Northern Sardinia, Italy) Contributions to Mineralogy and Petrology 140 404421 10.1007/s004100000196.Google Scholar
Cerri, G. Langella, A. Pansini, M. and Cappelletti, P., (2002) Methods for the determination of cation exchange capacities for clinoptilolite-rich rocks of the Logudoro region in northern Sardinia, Italy Clays and Clay Minerals 50 127135 10.1346/000986002761002739.Google Scholar
Chipera, S.J. and Bish, D.L., (1995) Multireflection RIR and intensity normalizations for quantitative analyses: applications to feldspar and zeolites Powder Diffraction 10 4755 10.1017/S0885715600014305.Google Scholar
Colantuono, A. Dal Vecchio, F. Mascolo, G. and Pansini, M., (1997) Thermal shrinkage of various cation forms of zeolite A Thermochimica Acta 296 5966 10.1016/S0040-6031(97)00065-8.Google Scholar
Colella, C., (1996) Ion exchange equilibria in zeolite minerals Mineralium Deposita 31 554562 10.1007/BF00196136.Google Scholar
Coombs, D.S. Alberti, A. Armbruster, T. Artioli, G. Colella, C. Galli, E. Grice, J.D. Liebau, F. Mandarino, J.A. Minato, H. Nickel, E.H. Passaglia, E. Peacor, D.R. Quartieri, S. Rinaldi, R. Ross, M. Sheppard, R.A. Tillmanns, E. and Vezzalini, G., (1998) Recommended nomenclature for zeolite minerals: Report of the Subcommittee on Zeolites of the International Mineralogical Association, Commission on New Minerals and Mineral Names European Journal of Mineralogy 10 10371081 10.1127/ejm/10/5/1037.Google Scholar
de’Gennaro, M. and Franco, E., (1979) Arricchimento e separazione delle zeoliti di rocce piroclastiche L’Industria Mineraria 30 329336.Google Scholar
de’Gennaro, M. Oggiano, G. Langella, A. and Di Pisa, A., (1995) Technological perspectives from volcaniclastic rocks of North Sardinia Proceedings of the 3° Convegno Nationale di Scienza e Tecnologia delle Zeoliti Cosenza, Italy De Rose 337345.Google Scholar
de Gennaro, R. Dondi, M. Cappelletti, P. Cerri, G. and Langella, A., (2001) Use of zeolite-bearing rocks as raw material for ceramic tiles 7thEuropean Conference on Advanced Materials Italy Rimini.Google Scholar
de Gennaro, R. Dondi, M. Langella, A. Cappelletti, P. and Colella, A., (2001) Use of high-grade zeolite-bearing rocks as raw material for the preparation of lightweight aggregates 7thEuropean Conference on Advanced Materials Italy Rimini.Google Scholar
Dell’Agli, G. Ferone, C. Mascolo, G. and Pansini, M., (1999) Thermodilatometric behaviour of Na- K- Ca- and NH4-clinoptilolite Thermochimica Acta 336 105110 10.1016/S0040-6031(99)00210-5.Google Scholar
Dell’Agli, G. Ferone, C. Mascolo, M.C. and Pansini, M., (2000) Thermal transformation of Ba-exchanged A and X zeolite into monoclinic celsian Solid State Ionics 127 309317 10.1016/S0167-2738(99)00298-2.Google Scholar
Eisenmann, G., (1962) Cation selective glass electrodes and their mode of operation Biophysical Journal 2 259323 10.1016/S0006-3495(62)86959-8.Google Scholar
Ferone, C. Dell’Agli, G. Mascolo, M.C. and Pansini, M., (2002) New insight into the thermal transformation of Baexchanged zeolite A in monoclinic celsian Chemical Materials 15 797803 10.1021/cm0111938.Google Scholar
Ghiara, M.R. Petti, C. Franco, E. Luxoro, S. and Gnazzo, L., (1995) Diagenetic clinoptilolite from pyroclastic flows of northern Sardinia Proceedings of the 3° Convegno Nationale di Scienza e Tecnologia delle Zeoliti Cosenza, Italy De Rose 349353.Google Scholar
Ghiara, M.R. Petti, C. Franco, E. Lonis, R. Luxoro, S. and Gnazzo, L., (1999) Occurrence of clinoptilolite and mordenite in Tertiary calc-alkaline pyroclastites from Sardinia (Italy) Clays and Clay Minerals 47 319328 10.1346/CCMN.1999.0470308.Google Scholar
Gottardi, G. and Galli, E., (1985) Natural Zeolites Berlin, Heidelberg Springer-Verlag 10.1007/978-3-642-46518-5 409 pp.Google Scholar
Kalló, D., Kallo, D. and Sherry, H.S., (1988) Catalysts from Hungarian natural clinoptilolite and mordenite Occurrence, Properties and Utilization of Natural Zeolites Budapest Akademiai Kiadó 601624.Google Scholar
Koyama, K. and Takeuchi, Y., (1977) Clinoptilolite: the distribution of potassium atoms and its role in the thermal stability Zeitschrift für Kristallographie 145 216239.Google Scholar
Langella, A. Cappelletti, P. Cerri, G. Bish, D.L. de’ Gennaro, M., Misaelides, P. Macasek, F. Pinnavaia, T.J. and Colella, C., (1999) Distribution of industrial minerals in Sardinia (Italy): clinoptilolite bearing rocks of the Logudoro region Natural Microporous Materials in the Environmental Technology Kluwer Academic Publishers, Dordrecht, The Netherlands NATO Science series 237252 10.1007/978-94-011-4499-5_16.Google Scholar
Langella, A. Pansini, M. Cappelletti, P. de’ Gennaro, B. de’ Gennaro, M. and Colella, C., (2000) Cation exchange equilibria in a sedimentary clinoptilolite, North Sardinia, Italy Microporous and Mesoporous Materials 37 337343 10.1016/S1387-1811(99)00276-0.Google Scholar
Mason, B. and Sand, L.B., (1960) Clinoptilolite from Patagonia: The relationship between clinoptilolite and heulandite American Mineralogist 45 341350.Google Scholar
Mumpton, F.A., (1960) Clinoptilolite redefined American Mineralogist 45 351369.Google Scholar
Shannon, R.D., (1976) Revised effective ionic radii in halides and chalcogenides Acta Crystallographica A32 751767 10.1107/S0567739476001551.Google Scholar
Shepard, A.O. and Starkey, H.C., (1964) Effect of cation exchange on the thermal behavior of heulandite and clinoptilolite US Geological Survey Professional Paper 475-D 8992.Google Scholar
Sherry, H.S. and Marinsky, J.A., (1969) The ion exchange properties of the zeolites Ion Exchange. A series of Advances New York Marcel Dekker 89133.Google Scholar
Torracca, E. Galli, P. Pansini, M. and Colella, C., (1998) Cation exchange reactions of a sedimentary chabazite Microporous and Mesoporous Materials 20 119127 10.1016/S1387-1811(97)00020-6.Google Scholar