Hostname: page-component-586b7cd67f-2brh9 Total loading time: 0 Render date: 2024-11-22T17:29:37.678Z Has data issue: false hasContentIssue false

Synthesis and Properties of Sn-Containing Magadiite

Published online by Cambridge University Press:  01 January 2024

Wojciech Supronowicz*
Affiliation:
Faculty of Natural Sciences, Carl von Ossietzky University, Faculty of Natural Sciences, Industrial Chemistry II, D-26-111 Oldenburg, Germany
Frank Roessner
Affiliation:
Faculty of Natural Sciences, Carl von Ossietzky University, Faculty of Natural Sciences, Industrial Chemistry II, D-26-111 Oldenburg, Germany
Wilhelm Schwieger
Affiliation:
Lehrstuhl für Chemische Reaktionstechnik Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, D-91-058 Erlangen, Germany
Mikhail Meilikhov
Affiliation:
Lehrstuhl für Anorganische Chemie II NC 2, Universitaetstrasse 150 D-44-801 Bochum, Germany
Daniel Esken
Affiliation:
Lehrstuhl für Anorganische Chemie II NC 2, Universitaetstrasse 150 D-44-801 Bochum, Germany
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Hydrothermal syntheses of the magadiite, a layered silicate structure, were conducted in the presence of a heteroatom source (SnCl4.5H2O) with the intention of investigating its influence on the resulting material, as well as the possibility of isomorphous replacement of Si by Sn atoms in the abovementioned structure. For comparison, unmodified magadiite, Al-containing magadiite, and impregnated magadiite were synthesized. The magadiite structure was identified for samples with Sn/Si ratios up to 0.015. Synthetic methods applied to Sn-modified materials were found to be unsuitable for the introduction of Al. The characterization methods used were X-ray diffraction, temperature-programmed reduction, and 29Si magic angle spinning nuclear magnetic resonance and these revealed the substitution of Si by Sn in the silica layers. No additional acid centers on the surfaces of the modified samples were detected, suggesting the presence of the desired four-coordinate Sn in the silica layers.

Type
Article
Copyright
Copyright © Clay Minerals Society 2012

References

Almond, G.G. Harris, R.K. and Franklin, K.R., 1997 A structural consideration of kanemite, octosilicate, magadiite and kenyaite Journal of Materials Chemistry 7 681687.CrossRefGoogle Scholar
Auroux, A. Sprinceana, D. and Gersavini, A., 2000 Support effects on de-NOx catalytic properties of supported tin oxides Journal of Catalysis 195 140150.CrossRefGoogle Scholar
Azizi, S.N. and Yousefpour, M., 2011 Isomorphous substitution of iron and nickel into analcime zeolite Zeitschrift für anorganische und allgemeine Chemie 637 759765.CrossRefGoogle Scholar
Borbely, G. Beyer, H.K. Karge, H.G. Schwieger, W. Brandt, A. and Bergk, K.H., 1991 Chemical characterization, structural features, and thermal behavior of sodium and hydrogen octosilicate Clays and Clay Minerals 39 490497.CrossRefGoogle Scholar
Boronat, M. Concepcion, P. Corma, A. and Renz, M., 2007 Peculiarities of Sn-Beta and potential industrial applications Catalysis Today 121 3944.CrossRefGoogle Scholar
Brindley, G.W., 1969 Unit cell of magadiite in air, in vacuo, and under other conditions American Mineralogist 54 15831591.Google Scholar
Camblor, M.A. Corma, A. and Perez-Pariente, J., 1993 Infrared spectroscopic investigation of titanium in zeolites. A new assignment of the 960 cm-1 band Journal of the Chemical Society, Chemical Communications 6 557559.CrossRefGoogle Scholar
Corma, A. Domine, M.E. and Valencia, S., 2003 Waterresistant solid Lewis acid catalysts: Meerwein-Ponndorf-Verley and Oppenauer reactions catalyzed by tin-beta zeolite Journal of Catalysis 215 294304.CrossRefGoogle Scholar
Feng, F. Balkus, K.J. Jr., 2003 Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template Journal of Porous Materials 10 515.CrossRefGoogle Scholar
Feng, F. Balkus, K.J. Jr., 2004 Recrystallization of layered silicates to silicalite - 1 Microporous and Mesoporous Materials 69 8596.CrossRefGoogle Scholar
Fletcher, R.A. and Bibby, D.M., 1987 Synthesis of kenyaite and magadiite in the presence of various anions Clays and Clay Minerals 35 318320.CrossRefGoogle Scholar
Fudala, Könya, Z. Kiyozumi, Y. Niwa, S.-I. Mizukami, F. Lentz, P.B. Nagy, J. and Kiricsi, I., 2000 Preparation, characterization and application of the magadiite based mesoporous composite material of catalytic interest Microporous and Mesoporous Materials 35-36 631641.CrossRefGoogle Scholar
Haneda, M. Ohzu, S. Kintaichi, Y. Shimizu, K. Shibata, J. Yoshida, H. and Hamada, H., 2001 Sol-gel prepared Sn-Al2O3 catalysts for the selective reduction of NO with propene Bulletin of the Chemical Society of Japan 74 20752081.CrossRefGoogle Scholar
Iwasaki, T. Kuroda, T. Ichio, S. Satoh, M. and Fujita, T., 2006 Seeding effect on crystal growth in hydrothermal synthesis of layered octosilicate Chemical Engineering Communications 193 6976.CrossRefGoogle Scholar
Janiszewska, E. Kowalak, S. Supronowicz, W. and Roessner, F., 2009 Synthesis and properties of stannosilicates Microporous and Mesoporous Materials 117 423430.CrossRefGoogle Scholar
Khouw, C.B. and Davis, M.E., 1995 Catalytic activity of titanium silicates synthesized in the presence of alkali-metal and alkaline-earth ions Journal of Catalysis 151 7786.CrossRefGoogle Scholar
Kim, M.H. Ko, Y. Kim, S.J. and Uh, Y.S., 2001 Vapor phase Beckmann rearrangement of cyclohexanone oxime over metal pillared ilerite Applied Catalysis A 210 345353.CrossRefGoogle Scholar
Kim, S.J. Jung, K.-D. Joo, O.-S. Kim, E.J. and Kang, T.B., 2004 Catalytic performance of metal oxide-loaded Tailerite for vapor phase Beckmann rearrangement of cyclohexanone oxime Applied Catalysis A 266 173180.CrossRefGoogle Scholar
Kiyozumi, Y. Salou, M. Mizukami, F. Nair, P. Maeda, K. and Niwa, S., 1998 Influence of solid-state transformation time on the nucleation and growth of silicalite 1 prepared from layered silicate Journal of Materials Chemistry 8 21252132.Google Scholar
Kiyozumi, Y. Salou, M. and Mizukami, F., 2002 Synthesis of hybrid zeolite disc from layered silicate Studies in Surface Science and Catalysis 142A 231238.CrossRefGoogle Scholar
Kuhlmann, A. Roessner, F. Schwieger, W. and Gravenhorst, O., 2004 New bifunctional catalyst based on Pt containing layered silicate Na-ilerite Catalysis Today 97 303306.CrossRefGoogle Scholar
Lagaly, G. Beneke, K. and Weiss, A., 1975 Magadiite and Hmagadiite: II. H-magadiite and its intercalation compounds American Mineralogist 60 650658.Google Scholar
Lauron-Pernot, H. Luck, F. and Popa, J.M., 1991 Methylbutynol: a new and simple diagnostic tool for acidic and basic sites of solids Applied Catalysis 78 213225.CrossRefGoogle Scholar
Lazar, K. Chandwadkar, A.J. Fejes, P. Cejka, J. and Ramaswamy, A.V., 2000 Valency changes of iron and tin in framework-substituted molecular sieves investigated by in situ Mössbauer spectroscopy Journal of Radioanalytical and Nuclear Chemistry 246 143148.CrossRefGoogle Scholar
Li, B. Li, X. Xu, J. Pang, X. Gao, X. and Zhou, Z., 2010 Synthesis and characterization of composite molecular sieves M1-MFI/M2-MCM-41(M1, M2 = Ni, Co) with high heteroatom content and their catalytic properties for hydrocracking of residual oil Journal of Colloid and Interface Science 346 199207.CrossRefGoogle ScholarPubMed
Macedo, T.R. and Airoldi, C., 2006 Host lamellar silicic acid magadiite for some heterocyclic amine inclusions and quantitative calorimetric data Microporous and Mesoporous Materials 94 8188.CrossRefGoogle Scholar
Mihályi, R.M. Pál-Borbély, G. Beyer, H.K. Szegedi, and Korányi, T.I., 2007 Characterization of aluminum and boron containing beta zeolites prepared by solid-state recrystallization of magadiite Microporous and Mesoporous Materials 98 132142.CrossRefGoogle Scholar
Ozawa, K. Iso, F. Nakao, Y. Cheng, Z. Fujii, H. and Yamaguchi, H.J., 2007 Preparation and characterization of Ag-magadiite nanocomposites Journal of the European Ceramic Society 27 26652669.CrossRefGoogle Scholar
Pál-Borbély, G. Beyer, H.K. Kiyozumi, Y. and Mizukami, F., 1997 Recrystallization of magadiite varieties isomorphically substituted with aluminum to MFI and MEL zeolite Microporous and Mesoporous Materials 11 4551.CrossRefGoogle Scholar
Pál-Borbély, G. Beyer, H.K. Kiyozumi, Y. and Mizukami, F., 1998 Synthesis and characterization of a ferrierite made by recrystallization of an aluminium-containing hydrated magadiite Microporous and Mesoporous Materials 22 5768.CrossRefGoogle Scholar
Peng, S. Gao, Q. Du, Z. and Shi, J., 2006 Precursors of TAA-magadiite nanocomposites Applied Clay Science 31 229237.CrossRefGoogle Scholar
Renz, M. Blasco, T. Corma, A. Fornes, V. Jensen, R. and Nemeth, L., 2002 Selective and shape-selective Baeyer-Villiger oxidations of aromatic aldehydes and cyclic ketones with Sn-Beta zeolites and H2O2 Chemistry - A European Journal 8 47084717.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Rodriguez, R. Pfaff, C. Melo, L. and Betancourt, P., 2005 Characterization and catalytic performance of a bimetallic Pt-Sn/HZSM-5 catalyst used in denitratation of drinking water Catalysis Today 107-108 100105.CrossRefGoogle Scholar
Royer, B. Cardoso, N.F. Lima, E.C. Macedo, T.R. and Airoldi, C., 2010 A useful organofunctionalized layered silicate for textile dye removal Journal of Hazardous Materials 15 366374.CrossRefGoogle Scholar
Schwieger, W. Gravenhorst, O. Selvam, T. Roessner, F. Schloegl, R. Su, D. and Mabande, G.T.P., 2003 Preparation of highly loaded platinum nanoparticles on silica by intercalation of [Pt(NH3)4]2+ ions into layered sodium silicate ilerite Colloid and Polymer Science 281 584588.CrossRefGoogle Scholar
Selvam, T. Bandarapu, B. Mabande, G.T.P. Toufar, H. and Schwieger, W., 2003 Hydrothermal transformation of a layered sodium silicate, kanemite, into zeolite Beta (BEA) Microporous and Mesoporous Materials 64 4150.CrossRefGoogle Scholar
Szostak, R. Nair, V. and Thomas, T.L.J., 1987 Incorporation and stability of iron in molecular-sieve structures. Ferrisilicate analogues of zeolite ZSM-5 Journal of the Chemical Society, Faraday Transactions 1 83 487495.CrossRefGoogle Scholar
Sprung, R. Davis, M.E. Kauffman, J.S. and Dybowski, C., 1990 Pillaring of magadiite with silicate species Industrial and Engineering Chemistry Research 29 213220.CrossRefGoogle Scholar
Superti, G.B. Oliveira, E.C. Pastore, H.O. Bordo, A. Bisio, C. and Marchese, L., 2007 Aluminum magadiite: an acid solid layered material Chemistry of Materials 19 43004315.CrossRefGoogle Scholar
Supronowicz, W. and Roessner, F., 2011 Influence of Sn and Al heteroatoms on the synthesis of ilerite Clays and Clay Minerals 59 95105.CrossRefGoogle Scholar
Wang, Y.-R. Wang, S.-F. and Chang, L.-C., 2006 Hydrothermal synthesis of magadiite Applied Clay Science 33 7377.CrossRefGoogle Scholar
Wang, S.-F. Lin, M.-L. Shieh, Y.-N. Wang, Y.-R. and Wang, S.-J., 2007 Organic modification of synthesized clay-magadiite Ceramics International 33 681685.CrossRefGoogle Scholar
Yanagisawa, T. Shimizu, T. and Kuroda, K.C., 1990 Trimethylsilyl derivatives of alkyltrimethylammonium-kanemite complexes and their conversion to microporous SiO2 materials Bulletin of the Chemical Society of Japan 63 15351537.CrossRefGoogle Scholar
Yu, J. and Yang, Q.-Y., 2010 Magnetization improvement of Fe-pillared clay with application of polyetheramine Applied Clay Science 48 185190.CrossRefGoogle Scholar