Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-22T17:59:47.788Z Has data issue: false hasContentIssue false

Synthesis and Paragenesis of Na-Beidellite as a Function of Temperature, Water Pressure, and Sodium Activity

Published online by Cambridge University Press:  28 February 2024

J. Theo Kloprogge*
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
A. M. J. van der Eerden
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
J. Ben H. Jansen*
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
John W. Geus
Affiliation:
Department of Inorganic Chemistry, University of Utrecht, P.O. Box 80.083, 3508 TB Utrecht, The Netherlands
Roelof D. Schuiling
Affiliation:
Institute of Earth Sciences, Department of Geochemistry, University of Utrecht, Budapestlaan 4, P.O. Box 80.021, 3508 TA Utrecht, The Netherlands
*
**Present address: Plastics and Rubber Institute TNO, P.O. Box 108, 3700 AC Zeist, The Netherlands
***Present address: Bowagemi, Prinses Beatrixlaan 20, 3972 AN Driebergen, The Netherlands
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

In the chemical system Na2O-Al2O3-SiO2-H2O, the stability field of Na-beidellite is presented as a function of pressure, temperature, and Na- and Si-activity. Na0.7-beidellite was hydrothermally synthesized using a stoichiometric gel composition in the temperature range from 275° to 475°C and at pressures from 0.2 to 5 kbar. Below 275°C kaolinite was the only crystalline phase, and above about 500°C paragonite and quartz developed instead of beidellite. An optimum yield of 95% of the Na0.7- beidellite was obtained at 400°C and 1 kbar after 20 days. Gels with a Na-content equivalent to a layer charge lower than 0.3 per O20(OH)4 did not produce beidellite. They yielded kaolinite below 325°C and pyrophyllite above 325°C. With gels of a Na-content equivalent to a layer charge of 1.5, the Na-beidellite field shifted to a minimum between temperatures of 275° and 200°C. This procedure offers the potential to synthesize beidellite at low temperatures. Beidellite synthesized from Na1.0-gel approach a Na1.35 composition and those from Na1.5- and Na2.0-gels a Na1.8 composition.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

Footnotes

*

Publication of the Debye Institute, University of Utrecht.

References

Ames, L. L. and Sand, L. B., 1958 Factors influencing maximum hydrothermal stability in montmorillonites Amer. Mineral. 43 641648.Google Scholar
Barrer, R. M., 1978 Zeolites and Clay Minerals as Sorbents and Molecular Sieves London Academic Press.Google Scholar
Breen, C., Adams, J. M. and Riekel, C., 1985 Review of the diffusion of water and pyridine in the interlayer space of montmorillonite: Relevance to kinetics of catalytic reactions in clays Clays & Clay Minerals 33 275284 10.1346/CCMN.1985.0330402.CrossRefGoogle Scholar
Eberl, D. and Hower, J., 1977 The hydrothermal transformation of sodium and potassium smectite into mixed-layer clay Clays & Clay Minerals 25 215227 10.1346/CCMN.1977.0250308.CrossRefGoogle Scholar
Ferry, J. M., Burt, D. M. and Ferry, J. M., 1982 Characterization of metamorphic fluid composition through mineral equilibria Characterization of Metamorphism through Mineral Equilibria, Reviews in Mineralogy Washington D.C. Mineralogical Society of America 207262 10.1515/9781501508172-010.CrossRefGoogle Scholar
Garrels, R. M., 1984 Montmorillonite/illite stability diagrams Clays & Clay Minerals 32 161166 10.1346/CCMN.1984.0320301.CrossRefGoogle Scholar
Hamilton, D. L. and Henderson, C. M. B., 1968 The preparation of silicate compositions by a gelling method Mineral. Mag. 36 832838.Google Scholar
Herrero, C. P., Sanz, J. and Serratosa, J. M., 1985 Tet-rahedral cation ordering in layer silicates by 29Si NMR spectroscopy Solid State Comm. 53 151154 10.1016/0038-1098(85)90115-2.CrossRefGoogle Scholar
Herrero, C. P., Gregorkiewitz, M., Sanz, J. and Serratosa, J. M., 1987 29Si MAS-NMR spectroscopy of mica-type silicates: Observed and predicted distribution of tetrahedral Al-Si Phys. Chem. Miner. 15 8490 10.1007/BF00307613.CrossRefGoogle Scholar
Kloprogge, J. T., (1992) Pillared clays. Preparation and characterization of clay minerals and aluminum-based pillaring agents: Ph.D. thesis, University of Utrecht, The Netherlands, Geologica Ultraiectina 91, 349 pp.Google Scholar
Kloprogge, J. T., Jansen, J B H and Geus, J. W., 1990a Characterization of synthetic Na-beidellite Clays & Clay Minerals 38 409414 10.1346/CCMN.1990.0380410.CrossRefGoogle Scholar
Kloprogge, J. T., van der Eerden, A M J Jansen, J B H and Geus, J. W., 1990b Hydrothermal synthesis of Na-beidellite Geologie en Mijnbouw 69 351357.Google Scholar
Kloprogge, J. T., Jansen, J B H Schuiling, R. D. and Geus, J. W., 1993 The interlayer collapse during dehydration of synthetic Na0,7-beidellite: A 23Na solid-state magic-angle spinning NMR study Clays & Clay Minerals 40 561566 10.1346/CCMN.1992.0400510.CrossRefGoogle Scholar
Koizumi, M. and Roy, R., 1959 Synthetic montmorillon-oids with variable exchange capacity Amer. Mineral. 44 788805.Google Scholar
Lahav, N., Shani, U. and Shabtai, J., 1978 Cross linked smectites I. Synthesis and properties of hydroxy-alumi-num-montmorillonite Clays & Clay Minerals 26 107115 10.1346/CCMN.1978.0260205.CrossRefGoogle Scholar
Loewenstein, W., 1954 The distribution of aluminum in the tetrahedra of silicates and aluminates Amer. Mineral. 39 9296.Google Scholar
Ocelli, M., 1983 Catalytic cracking with an interlayered clay. A two-dimensional molecular sieve Ind. Eng. Chem. Prod. Res. Dev. 22 553559 10.1021/i300012a008.CrossRefGoogle Scholar
Ocelli, M., (1987) Surface and catalytic properties of some pillared clays: Proc. Internal. Clay Conf. (Denver, 1985), Schultz, L. G., Olphen, H. van, and Mumpton, F. A., eds., 319323.Google Scholar
Pinnavaia, T. J., Tzou, M.-S. and Landau, S. D., 1985 New chromia pillared clay catalysts J. Amer. Chem. Soc. 107 47834785 10.1021/ja00302a033.CrossRefGoogle Scholar
Plee, D., Gatineau, L. and Fripiat, J. J., 1987 Pillaring processes of smectites with and without tetrahedral substitution Clays & Clay Minerals 35 8188 10.1346/CCMN.1987.0350201.CrossRefGoogle Scholar
Ross, C. S., and Hendricks, S. B., (1945) Minerals of the montmorillonite group: U.S. Geol. Surv. Prof. Paper 205–B.Google Scholar
Rupert, J. P., Granquist, W. T., Pinnavaia, T. J. and Newman, A. C. D., 1987 Catalytic properties of clay minerals Chemistry of Clays and Clay Minerals London Mineralogical Society, Longman Scientific & Technical 275318.Google Scholar
Sand, L. B., Roy, R. and Osborn, E. F., 1957 Stability relations of some minerals in the Na2O-Al2O3-SiO2-H2O system Econ. Geol. 52 169179 10.2113/gsecongeo.52.2.169.CrossRefGoogle Scholar
Schutz, A., Stone, W E E Poncelet, G. and Fripiat, J. J., 1987 Preparation and characterization of bidimensional zeolitic structures obtained from synthetic beidellite and hydroxy-aluminum solutions Clays & Clay Minerals 35 251261 10.1346/CCMN.1987.0350402.CrossRefGoogle Scholar
Singh, S. S. and Kodama, H., 1988 Reactions of polynu-clear hydroxyaluminum cations with montmorillonite and the formation of a 28 A pillared complex Clays & Clay Minerals 36 397402 10.1346/CCMN.1988.0360503.CrossRefGoogle Scholar
Sterte, J., 1986 Synthesis and properties of titanium oxide cross-linked montmorillonite Clays & Clay Minerals 34 658664 10.1346/CCMN.1986.0340606.CrossRefGoogle Scholar
Sterte, J. and Shabtai, J., 1987 Cross linked smectites V. Synthesis and properties of hydroxy-silicoaluminum mont-morillonites and fluorhectorites Clays & Clay Minerals 35 429439 10.1346/CCMN.1987.0350603.CrossRefGoogle Scholar
Thompson, A. B., 1970 A note on the kaolinite-pyrophyl-lite equilibrium Amer. J. Sci. 268 454458 10.2475/ajs.268.5.454.CrossRefGoogle Scholar
Torii, K. and Iwasaki, T., 1986 Synthesis of new triocta-hedral Mg-smectite Chem. Soc. Japan, Chem. Letters 1986 20212024.Google Scholar
Torii, K. and Iwasaki, T., 1987 Synthesis of hectorite Clay Sci. 7 116.Google Scholar
Tuttle, O. F., 1949 Two pressure vessels for silicate-water studies Geol. Soc. Amer. Bull. 60 17271729 10.1130/0016-7606(1949)60[1727:TPVFSS]2.0.CO;2.CrossRefGoogle Scholar
Van der Pluijm, B. A., Lee, J. H. and Peacor, D. R., 1988 Analytical electron microscopy and the problem of potassium diffusion Clays & Clay Minerals 36 498504 10.1346/CCMN.1988.0360603.CrossRefGoogle Scholar
Velde, B., 1985 Clay Minerals. A Physico-chemical Explanation of Their Occurrence: Developments in Sedimentology Amsterdam Elsevier.Google Scholar
Weir, A. H. and Greene-Kelly, R., 1962 Beidellite Amer. Mineral. 47 137146.Google Scholar