Hostname: page-component-848d4c4894-v5vhk Total loading time: 0 Render date: 2024-07-07T12:17:05.616Z Has data issue: false hasContentIssue false

Swelling and Structural Organization of Saponite

Published online by Cambridge University Press:  01 July 2024

H. Suquet
Affiliation:
Laboratoire de Chimie des Solides, Université, Paris VI 4, Place Jussieu, 75230 Cedex 05, Paris, France
C. de la Calle
Affiliation:
Laboratoire de Chimie des Solides, Université, Paris VI 4, Place Jussieu, 75230 Cedex 05, Paris, France
H. Pezerat
Affiliation:
Laboratoire de Chimie des Solides, Université, Paris VI 4, Place Jussieu, 75230 Cedex 05, Paris, France

Abstract

The structural formula of Kozfikov saponite (Czechoslovakia) is as follows:

$N{a_{0.005}}C{a_{0.22}}{K_{0.01}}[S{i_{3.30}}A{l_{0.68}}F{e^{3 + }}{}_{0.02}][M{g_{2.50}}F{e^{2 + }}{}_{0.26}F{e^{3 + }}{}_{0.24}]{O_{10}}{(OH)_2}.$
Saturated with 6 different cations (Li, Na, K, Ca, Mg, Ba) its swelling in ethylene glycol, glycerol and water and its homogeneous hydration extents according to the relative humidity have been studied. Our results were compared with those found for montmorillonites, beidellites and vermiculites in order to estimate the respective influence of the surface charge density and the charge localization on the swelling properties. The three-dimensional organization of the saponite is more or less affected by random stacking faults and by multiple b/3 translations according to the exchangeable cation, the swelling state and the nature of the solvation liquid. Our experimental results indicate that the three-dimensional order met in the hydrated saponites can be explained by an anchoring of the layers towards each other by chains made up of cation -dipole interactions and of hydrogen bonds between negatively charged surface oxygens and the interlayer water. This type of interlayer link is relatively weak. It is therefore easy to introduce stacking faults in these edifices in particular by grinding of the samples.

Type
Research Article
Copyright
Copyright © 1975, The Clay Minerals Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Brindley, G. W., (1966) Ethylene glycol and glycerol complexes of smectites and vermiculites Clay Minerals 6 237259.CrossRefGoogle Scholar
Brown, B. E. and Bailey, S. W., (1962) Chlorite polyty-pism—I. Regular and semirandom one-layer structures Am. Miner. 47 819850.Google Scholar
Calvet, R., (1972) Adsorption de l’eau sur les argiles. Etude de l’hydration de la montmorillonite Bull. Soc. chim. Fr. 8 30973104.Google Scholar
Doner, H. E. and Mortland, M. M., (1971) Charge location as a factor in the dehydration of 2:1 clay minerals Soil Sci. 35 360362.CrossRefGoogle Scholar
Farmer, V. C. and Mortland, M. M., (1966) An infrared study of the coordination of pyridine and water to exchangeable cations in montmorillonite and saponite J. chem. Soc. A 344351.CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., (1971) Interlayer complexes in layer silicates Trans. Faraday Soc. 67 9 27372749.CrossRefGoogle Scholar
Glaeser, R. Mantin, I. e. and Méring, J., (1967) Observations sur la beidellite Bull, grpefr. Argiles 19 125130.CrossRefGoogle Scholar
Glaeser, R. e. and Méring, J., (1968) Domaines d’hydration homogène des smectites C. r. hebd. Séan. Acad. Sci, Paris 267 463466.Google Scholar
Harward, M. E. Carstea, D. D. and Sayegh, A. H., (1969) Properties of vermiculites and smectites: expansion and collapse Clays and Clay Minerals 16 437447.CrossRefGoogle Scholar
Hecht, A. M. Dupont, M. e. and Ducros, P., (1966) Etude des phénomènes de transport de l’eau adsorbée dans certains minéraux argileux par la résonance magnétique nucléaire Bull. Miner. Cristallogr LXXXIX 613.Google Scholar
Mamy, J. e. and Le Renard, J., (1970) Contribution à l’étude de la structure de l’espace interfeuillet des micas altérés Réunion hispano-belga de minerales de la arcilla 1720.Google Scholar
Melka, K., (1965) Redetermination of delessite in the amyg-daloïdal melaphyre from the Kozákov (Bohemia) Acta Universitatis Carolinae, Geologica, Supplementum 2 715.Google Scholar
Russell, J. D. and Farmer, V. C., (1964) Infra-red spectroscopic study of the dehydration of montmorillonite Clay Miner. Bull. 5 443464.CrossRefGoogle Scholar
Russell, J. D., (1965) Infrared study of the reactions of ammonia with montmorillonite and saponite Trans. Faraday Soc. 61 22842294.CrossRefGoogle Scholar
Schultz, L. G., (1969) Lithium and potassium absorption, dehydroxylation temperature and structural water content of aluminous smectites Clays and Clay Minerals 17 115149.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W., (1966) Crystal structure of a two-layer Mg-vermiculite Am. Miner. 51 11241143.Google Scholar
Van Olphen, H., (1965) Thermodynamics of interlayer adsorption of water in clays. Sodium-vermiculite J. Colloid Sci. 20 828837.CrossRefGoogle Scholar
Walker, G. F., (1955) The mechanism of dehydration of Mg-vermiculite Clays and Clay Minerals, 4th Conference 103115.CrossRefGoogle Scholar
Walker, G. F., (1958) Reactions of expanding lattice clay minerals with glycerol and ethylene glycol Clay Miner. Bull. 3 302313.CrossRefGoogle Scholar
Weir, A. H., (1960) Relationship between physical properties, structure and composition of smectites .Google Scholar
Weiss, V. A. Koch, G. u. and Hofmann, U., (1955) Zur Kenntnis von Saponit Ber. dt. chem. Ges. 32 1217.Google Scholar