Hostname: page-component-78c5997874-lj6df Total loading time: 0 Render date: 2024-11-20T00:38:23.307Z Has data issue: false hasContentIssue false

Surface Structural Model for Ferrihydrite

Published online by Cambridge University Press:  28 February 2024

A. Manceau
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University Joseph Fourier and CNRS, 38041 Grenoble Cedex 9, France
W. P. Gates*
Affiliation:
Environmental Geochemistry Group, LGIT-IRIGM, University Joseph Fourier and CNRS, 38041 Grenoble Cedex 9, France
*
Present address: Savannah River Ecology Laboratory, The University of Georgia, Drawer E, Aiken, South Carolina 29802.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A structural model for the geometry of Fe(III) octahedra near the surface of finely divided ferrihydrite was elaborated based on the bond-valence theory and by considering the interaction of water molecules in the 2 nearest hydration spheres. In contrast to bulk Fe atoms, which are bonded to bridging oxo (O) and hydroxo (OH) ligands, surface Fe atoms are also octahedrally coordinated to H2O ligands forming the 1st hydration shell ((H2O)I). In the wet state, external water molecules of the 2nd hydration shell ((H2O)II) are singly H-bonded to (H2O)I, while they are doubly coordinated in the dry state. Accordingly, wet ferrihydrite contains twice as many sorbed water molecules as dry ferrihydrite, and the structural difference due to the 2nd hydration shell accounts quantatively for the 15% increase of ferrihydrite weight experimentally measured in moist atmosphere. The interaction of surface Fe atoms with their 2 nearest hydration spheres modifies the geometry of surface Fe octahedra as compared to bulk octahedra, and idealized Fe-OH and Fe-H2O bond lengths in the wet and dry state were evaluated by the bond-valence theory. Our structural model provides a sound crystal-chemical basis to describe many apparent incongruities of Fe X-ray absorption near edge structure (K-XANES) and extended X-ray absorption fine structure (EXAFS) spectroscopic data that have led to differing interpretations of the coordination environment of Fe in ferrihydrite by various investigators.

Type
Research Article
Copyright
Copyright © 1997, The Clay Minerals Society

References

Bajt, S. Sutton, S.R. and Delaney, J.S., (1994) X-ray microprobe analysis of iron oxidation states in silicates and oxides using X-ray absorption near edge structure (XANES) Geochim Cosmochim Acta 58 585214 10.1016/0016-7037(94)90305-0.CrossRefGoogle Scholar
Bianconi, A., Koningsberger, D.C. and Prins, R., (1988) XANES spectroscopy X-ray absorption. Principles, applications, techniques of EXAFS, SEXAFS and XANES New York J Wiley 573662.Google Scholar
Bottero, J.Y. Manceau, A. Villieras, F. and Tchoubar, D., (1994) Structure and mechanism of nucleation of FeOH (C1) polymers Langmuir 10 10319 10.1021/la00013a046.Google Scholar
Brese, N.E. and O’Keefe, M., (1991) Bond-valence parameters for solids Acta Crystallogr B47 192197 10.1107/S0108768190011041.CrossRefGoogle Scholar
Brown, I.D., (1976) On the geometry of O-H… O hydrogen bonds Acta Crystallogr A32 2431 10.1107/S0567739476000041.CrossRefGoogle Scholar
Brown, I.D., O’Keefe, M. and Navrotsky, A., (1981) The bond-valence method: An empirical approach to chemical structure and bonding Structures and bonding in crystals New York Academic Pr. 130.Google Scholar
Brown, I.D., (1992) Chemical and steric constrains in inorganic solids Acta Crystallogr B48 553572 10.1107/S0108768192002453.CrossRefGoogle Scholar
Brown, I.D. and Altermatt, D., (1985) Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database Acta Crystallogr B41 244247 10.1107/S0108768185002063.CrossRefGoogle Scholar
Brown, I.D. and Shannon, R.D., (1973) Empirical bond-strength-bond-length Curves for oxides Acta Crystallogr A29 266282 10.1107/S0567739473000689.CrossRefGoogle Scholar
Calas, G. and Petiau, J., (1983) Coordination of iron in oxide glasses through high-resolution K-edge spectra: Information from the pre-edge Solid State Commun 48 48629 10.1016/0038-1098(83)90530-6.CrossRefGoogle Scholar
Caminiti, R. Licheri, G. Piccaluga, G. and Pinna, G., (1978) Hydration water-external water interactions around Cr3+ ions J Chem Phys 69 69 4 10.1063/1.436385.CrossRefGoogle Scholar
Cardile, C.M., (1988) Tetrahedral Fe3 in ferrihydrite: 57Fe Mössbauer spectroscopic evidence Clays Clay Miner 36 36539 10.1346/CCMN.1988.0360607.CrossRefGoogle Scholar
Chukhrov, F.V. Zvyagin, B.B. Gorshkov, A.I. Yermilova, L.P. and Balashova, V.V., (1973) Ferrihydrite Izv Akad Nauk, Ser Geol 4 2333.Google Scholar
Combes, J.M. Manceau, A. and Calas, G., (1986) Study of the local structure in poorly-ordered precursors of iron oxi-hydroxides J Physique C8 697701.Google Scholar
Combes, J.M. Manceau, A. and Calas, G., (1990) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. II. Hematite formation from ferric gels Geochim Cosmochim Acta 54 541091 10.1016/0016-7037(90)90440-V.CrossRefGoogle Scholar
Combes, J.M. Manceau, A. Calas, G. and Bottero, J.Y., (1989) Formation of ferric oxides from aqueous solutions: A polyhedral approach by X-ray absorption spectroscopy. I. Hydrolysis and formation of ferric gels Geochim Cosmochim Acta 53 53594 10.1016/0016-7037(89)90001-X.CrossRefGoogle Scholar
Dasgupta, D.R., (1974) Oriented transformation of chalcophan-ite during thermal treatment Z Kristallogr 139 139 128 10.1524/zkri.1974.139.1-2.116.CrossRefGoogle Scholar
Douglas, B. McDaniel, D. and Alexander, J., (1994) Concepts and models of inorganic chemistry New York J Wiley.Google Scholar
Drits, V.A. Sakharov, B.A. Salyn, A.L. and Manceau, A., (1993) Structural model for ferrihydrite Clay Miner 28 28208.CrossRefGoogle Scholar
Farges, F., (1995) The site of Fe in Fe-bearing MgSiO3, enstatite and perovskite. A theoretical X-ray multiples-cattering study at the Fe K-edge Phys Chem Miner 22 318322 10.1007/BF00202772.CrossRefGoogle Scholar
Henderson, C.M.B. Cressey, G. and Redfern, S.A.T., (1995) Geological applications of synchrotron radiation Radiat Phys Chem 45 45481 10.1016/0969-806X(95)92799-5.CrossRefGoogle Scholar
Manceau, A., (1995) The mechanism of anion adsorption on Fe oxides: Evidence for the bonding of arsenate tetrahedra on free Fe(O,OH)6 edges Geochim Cosmochim Acta 59 593653 10.1016/0016-7037(95)00275-5.CrossRefGoogle Scholar
Manceau, A. and Charlet, L., (1994) The mechanism of selenate adsorption on goethite and hydrous ferric oxide J Colloid Interface Sci 168 168 93 10.1006/jcis.1994.1396.CrossRefGoogle Scholar
Manceau, A. Charlet, L. Boisset, M.C. Didier, B. and Spadini, L., (1992) Sorption and speciation of heavy metals on Fe and Mn hydrous oxides. From microscopic to macroscopic Appl Clay Sci 7 7223 10.1016/0169-1317(92)90040-T.CrossRefGoogle Scholar
Manceau, A. and Combes, J.M., (1988) Structure of Mn and Fe oxides and oxyhydroxides: A topological approach by EX-AFS Phys Chem Miner 15 15295 10.1007/BF00307518.CrossRefGoogle Scholar
Manceau, A. Combes, J.M. and Calas, G., (1990) New data and a revised model for ferrihydrite: A comment on a paper by R. A. Eggleton and R. W. Fitzpatrick Clays Clay Miner 38 331334 10.1346/CCMN.1990.0380314.CrossRefGoogle Scholar
Manceau, A. and Drits, V.A., (1993) Local structure of ferrihydrite and feroxyhite by EXAFS spectroscopy Clay Miner 28 28184 10.1180/claymin.1993.028.2.01.CrossRefGoogle Scholar
Matsushita, T. Hashizume, H. and Koch, E.E., (1983) X-ray monochromators Handbook on synchrotron radiation .Google Scholar
McMaster, W K D Grande, N. Mallett, J.H. and Hubbell, J.H., (1969) Compilation of X-ray cross sections Springfield US National Technical Information Service.Google Scholar
Muller, J.E. Jepson, O. and Wilkins, J.W., (1982) X-ray absorption spectra: K-edges of 3d transitions metals, L-edges of 3d and 4d metals, and M-edges of palladium Solid State Commun 42 365368 10.1016/0038-1098(82)90154-5.CrossRefGoogle Scholar
Parfitt, R.L. Atkinson, R.J. and Smart, R.S.C., (1975) The mechanism of phosphate fixation by iron oxides Soil Sci Soc Am J 39 39841 10.2136/sssaj1975.03615995003900050017x.CrossRefGoogle Scholar
Parratt, L.G., (1959) Electronic band structure of solids by X-ray spectroscopy Rev Mod Phys 31 31645 10.1103/RevModPhys.31.616.CrossRefGoogle Scholar
Pauling, L., (1929) The principles determining the structure of complex ionic crystals J Am Chem Soc 51 511026.CrossRefGoogle Scholar
Post, J.E. and Appleman, D.E., (1988) Chalcophanite, ZnMn3O7: 3H2O: New crystal-structure determination Am Mineral 73 14011404.Google Scholar
Roe, A.L. Schneider, D.J. Mayer, R.J. Pyrz, J.W. Widom, J. and Que, J., (1984) X-ray absorption spectroscopy of iron-tyrosinate proteins J Am Chem Soc 106 1061681 10.1021/ja00318a021.CrossRefGoogle Scholar
Russell, J.D., (1979) Infrared spectroscopy of ferrihydrite: Evidence for the presence of structural hydroxyl groups Clays Clay Miner 14 14113.Google Scholar
Schwertmann, U. and Cornell, R.M., (1991) Iron oxides in the laboratory Weinheim VCH Verlagsgesellschaft mbH..Google Scholar
Shannon, R.D., (1976) Revised effective ionic radius and systematic studies of interatomic ditances in halides and chalcogenides Acta Crystallogr B25 925946.Google Scholar
Sherman, D.M., (1985) The electronic structures of Fe3+ coordination sites in iron oxides; Applications to spectra, bonding, and magnetism Phys Chem Miner 12 161175 10.1007/BF00308210.CrossRefGoogle Scholar
Spadini, L. Manceau, A. Schindler, P.W. and Charlet, L., (1994) Structure and stability of Cd2 surface complexes on ferric oxides. I. Results from EXAFS spectroscopy J Colloid Interface Sci 168 168 86 10.1006/jcis.1994.1395.CrossRefGoogle Scholar
Stanjek, H. and Weidler, P.G., (1992) The effect of dry heating on the chemistry, surface area, and oxalate solubility of synthetic 2-line and 6-line ferrihydrites Clay Miner 27 397412 10.1180/claymin.1992.027.4.01.CrossRefGoogle Scholar
Stern, E.A. and Kim, K., (1981) Thickness effect on the extended X-ray absorption fine structure amplitude Phys Rev 23 233787 10.1103/PhysRevB.23.3781.CrossRefGoogle Scholar
Szytula, A. Burewicz, A. Dimitrijevic, Z. Krasnicki, S. Rzany, H. Todorovic, J. Wanic, A. and Wolski, W., (1968) Neutron diffraction studies of α-FeOOH Phys Status Solidi 26 26434 10.1002/pssb.19680260205.CrossRefGoogle Scholar
Wadsley, A.D., (1955) The crystal structure of chalcophanite, ZnMn3O7·3H2O Acta Crystallogr 8 1165 172.CrossRefGoogle Scholar
Waychunas, G.A. Brown, G.E. Jr and Apted, M.J., (1983) X-ray K-edge absorption spectra of Fe minerals and model compounds: Near edge structure Phys Chem Miner 10 10 9 10.1007/BF01204319.CrossRefGoogle Scholar
Waychunas, G. B. Brown, G.E. Ponader, C.W. and Jackson, W.E., (1988) Evidence from X-ray absorption for network forming Fe2 in molten silicates Nature 332 332 253 10.1038/332251a0.CrossRefGoogle Scholar
Waychunas, G.A. Rea, B.A. Fuller, C.C. and Davis, J. A., (1993) Surface chemistry of ferrihydrite: Part 1. EXAFS studies of the geometry of coprecipitated and adsorbed ansenate Geochin Cosmochin Acta 57 572269 10.1016/0016-7037(93)90468-C.Google Scholar
Wells, A.F., (1984) Structural inorganic chemistry Oxford Oxford Univ Pr..Google Scholar
Zhao, J. Huggins, F.E. Feng, Z. and Huffman, G.P., (1994) Ferrihydrite: Surface structure and its effects on phase transformation Clays Clay Miner 42 42746.Google Scholar
Zhao, J. Huggins, F.E. Feng, Z. Lu, F. Shah, N. and Huffman, G.P., (1993) Structure of a nanophase iron oxide catalyst J Catal 143 143509 10.1006/jcat.1993.1293.CrossRefGoogle Scholar