Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-23T05:20:08.271Z Has data issue: false hasContentIssue false

The Surface Reactivity of Vermiculite Towards Hexamethylene Diisocyanate (HMDI)

Published online by Cambridge University Press:  01 July 2024

B. Siffert
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24, Avenue du Président Kennedy, 68200 Mulhouse, France
H. Biava
Affiliation:
Centre de Recherches sur la Physico-Chimie des Surfaces Solides, 24, Avenue du Président Kennedy, 68200 Mulhouse, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The reaction of hexamethylene diisocyanate with the surface of heat-activated vermiculite parallels the reactions with the oxides SiO2, Al2O3, MgO considered individually, which a number of authors have already described. The fixation ratio is about 5 molecules per 100 Å2 area. Nearly one half of the grafted molecules retain a “free” isocyanate function, which is requisite for a subsequent polyaddition of the processed mineral. The interaction with vermiculite occurs according to three principal processes; (i) formation of a surface urethane, (ii) formation of a surface carbamate, (iii) fixation by hydrogen bonds.

Type
Research Article
Copyright
Copyright © 1976 The Clay Minerals Society

References

Basila, M. R. (1962) An infrared study of a silica–alumina surface: J. Phys. Chem. 66(2), 22232228.CrossRefGoogle Scholar
Boehm, H. P. and Schneider, M. (1959) Uber die Hydroxylgruppen an der Oberfläche des amorphen Siliciumdioxyds “Aerosil” und ihre Reaktionen: Z. anorg. allg. Chem. 301, 326335.CrossRefGoogle Scholar
Boehm, H. P. and Schneider, M. (1962) Uber die Bindung von Aluminium aus Aluminiumchlorid—Lösungen an Siliciumdioxyd Oberflächen: Z. anorg. allg. Chem. 316, 128133.CrossRefGoogle Scholar
Boehm, H. P., Schneider, M. and Arendt, (1963) Der Wassergehalt getrockneter Siliciumdioxyd Oberflächen: Z. anorg. allg. Chem. 320, 4353.CrossRefGoogle Scholar
Cram, D. J. and Hammond, G. S. (1964). Organic Chemistry, 2nd Edition. McGraw-Hill, New York.Google Scholar
Colthup, N. B., Daly, L. H. and Wiberley, St. E. (1964) Introduction to Infrared and Raman Spectroscopy. Academic Press, New York.Google Scholar
Donnet, J. B. (1969) Les fonctions chimiques superficielles: Coll. Adhesion Phys. Chim. des Surfaces Solides, Mulhouse, 8–10 Octobre, 162176.Google Scholar
Eley, D. D., Kiwanuka, G. M. and Rochester, C. H. (1973) I.R. study of the reactions between ethyl isocyanate and the surface of magnesium oxide: J. Chem. Soc. Farad. Trans. I 69(12), 10992011.CrossRefGoogle Scholar
Forni, L. (1973) Comparison of the methods for the determination of surface acidity of solid catalysts: Catalysis Rev. 8(1), 65115.CrossRefGoogle Scholar
Folman, M. and Yates, D. J. C. (1958) Perturbation effects due to hydrogen bonding in physical adsorption studied by length-change and infrared techniques: Proc. Roy. Soc. (A) 246, 3251.Google Scholar
Fripiat, J. J., Gastuche, M. C. and Brichard, R. (1962) The surface heterogeneity in silica gel from kinetics of isotopic exchange OH-OD: J. Phys. Chem. 66, 805812.CrossRefGoogle Scholar
Guillet, A. (1973) Contribution à l'étude de l'adsorption d'isocyanates sur l'alumine et la silice: Thèse de Doct., Université Strasbourg.Google Scholar
Imelik, B. and Fraissard, J. (1963) Etude de la deshydration des gels de silice. II—Spectroscopie infrarouge: Bull. Soc. Chim. 273, 17101713.Google Scholar
Kubitz, K. A. (1957) Determination of traces of isocyanate in urethane based polymers: Anal. Chem. 29(5), 814816.CrossRefGoogle Scholar
Kulik, N. V., Negievich, L. A., Kurgan, N. P. and Kachan, A. A. (1970) Adsorption de butylisocyanate sur la silice: Ukr. Khim. Zh. 36(9), 904908.Google Scholar
Lange, K. R. (1968). Reactive organic molecules on silica surfaces: Chem. Ind. (Lond.) 14, 441442.Google Scholar
Le Dred, R. (1968) Contribution á l'étude d'un interstratifié Mica-Vermiculite. Formations de complexes salins interfoliaires. Réaction d'oxydo–réduction au sein du feuillet silicaté: Thèse de Docteur es-Sciences, Strasbourg–Mulhouse.Google Scholar
Normant, H. and Normant, J. F. (1968) Chimie Organique, Masson, Paris.Google Scholar
Peri, J. B. (1965) Infrared study of adsorption of ammonia on dry γ-alumina: J. Phys. Chem., 69(1), 231239.CrossRefGoogle Scholar
Peri, J. B. and Hensley, A. L. Jr. (1968) The surface structure of silica gel: J. Phys. Chem. 72, 29262933.CrossRefGoogle Scholar
Saunders, J. H. and Frisch, K. C. (1962) Polyurethanes: Chemistry and Technology I. Interscience Publishers, New York.Google Scholar
Sayigh, A. A. R., Ulrich, H. and Farrissey, W. J. Jr. (1972) Diisocyanates: High Polym. 27, 369476.Google Scholar
Shaskova, V. E., Sweeny, W. and Tietz, R. F. (1960) Homopolymerization of mono-isocyanates: J. Am. Chem. Soc. 82, 866873.Google Scholar
Sieskind, O. (1963) Contribution à l'étude des interactions argile-matière organique. Adsorption des acides aminés par la montmorillonite: Thèse Doctorat es-Sciences, Strasbourg.Google Scholar
SokoL'Skii, D. V., Kurashvili, L. M. and Zavorokhina, I. A. (1971) Infrared spectra of diethyldithiocarbamate complexes of transition metals: Izv. Akad. Nauk Kaz. SSR, Ser. Khim. 21(6), 1014.Google Scholar
Sykes, P. (1969) Initiation aux Mécansimes Réactionels en Chimie Organique. Dunod, Paris.Google Scholar
Volkmann, H. (1972) Handbuch der Infrarot-Spektroskopie. Verlag Chemie, Weinheim/Bergstr.Google Scholar
Weldes, H. H. (1963)(, 1965) Canad. Pat. 676 204 (1963); U.S. Pat. 3 208 867 (1965).Google Scholar
Wey, R. and Le Dred, R. (1964) Fixation d'halogénures alcalins par la vermiculite: Bull. Gr. Fr. Arg. 15(10), 1728.Google Scholar
Wey, R. and Le Dred, R. (1964) Sur l'insertion de chlorure de lithium entre les feuillets d'une vermiculite: C.r. Ac. Sc. 258, 42954298.Google Scholar