Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-22T12:26:26.908Z Has data issue: false hasContentIssue false

Surface Free Energy Components of Clay-Synthetic Humic Acid Complexes from Contact-Angle Measurements

Published online by Cambridge University Press:  02 April 2024

Claire Jouany*
Affiliation:
I.N.R.A., Science du Sol, 78026 Versailles, Cedex, France
*
1Present address: I.N.R.A., Station d'Agronomie, Chemin de Borde-Rouge, Auzeville, B.P. 27, 31326 Castanet-Tolosan, Cedex, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surface free energy components of clay-organic complexes were determined to assess to what extent an organic adsorbate modified the surface properties of the mineral, insofar as the stability of soil aggregates is concerned. Adsorption isotherms for two synthetic, humic acid-like polymers were determined on a Ca-montmorillonite. From contact-angle measurements performed on dry surfaces, the surface free energy properties of the clay-organic complexes were determined using the two-liquid-phases method (water and hydrocarbons). This method allows both the dispersive and nondispersive components of the solid surface free energy, γDS and γPS, to be determined. The results show that a very small amount of polymer (1% by weight) adsorbed on the external surfaces of the montmorillonite decreased markedly the surface free energy components of the clay: γDS decreased from 75 to 28 mJ/m2 for polycondensate catechol (PC) and from 75 to 30 mJ/m2 for polycondensate catechol triglycine (PCT), whereas γPS ranged from 35 to 16 mJ/m2 (PC) and from 35 to 17 mJ/m2 (PCT). Although their chemical compositions were different, both polymers similarly modified γDS and γPS. Increasing the amount of polymer adsorbed (from 1% to 3.5% by weight) affected mostly γPS, which became as low as 5 mJ/m2; meanwhile, γDS decreased from 30 to 23 mJ/m2. Possibly, the molecular orientation of the adsorbate changed in the process of dehydration. Following adsorption of synthetic humic acid-like polymers, dry Ca-montmorillonite complexes displayed γS values < 50 mJ/m2, which were consistent with the solid-water contact angles measured in air.

Résumé

Résumé

Les composantes de l’énergie libre de surface sont mesurées pour des complexes organo-minéraux. Cette étude est menée dans le but de vérifier de quelle manière un revêtement organique modifie les propriétés de surface du minéral et peut jouer sur la stabilité structurale. On a déterminé les isothermes d'adsorption sur une montmorillonite calcique pour deux polymères synthétiques modèles d'acides humiques. L’énergie libre de surface des complexes organo-minéraux est calculée à partir de la mesure des angles de contact obtenus sur des surfaces déshydratées avec la méthode à deux phases liquides (eau et hydrocarbures). Cette méthode permet de déterminer à la fois γPS et γDS, qui sont respectivement la composante polaire et la composante dispersive de l’énergie de surface γS. Les résultats montrent qu'une quantité très faible de polymère (1% en poids) adsorbé sur les surfaces externes de la montmorillonite diminue de manière importante les composantes de l’énergie libre de surface du minéral: γDS diminue de 75 à 28 mJ/m2 pour le polycondensat catéchol (PC) et de 75 à 30 mJ/m2 pour le polycondensat catéchol triglycine (PCT), alors que γPS varie de 35 à 16 mJ/m2 (PC) et de 35 à 17 mJ/m2 (PCT). Bien que leurs compositions chimiques soient différentes, les deux polymères modifient pareillement γPS et γDS. Une augmentation sensible des quantités adsorbées (de 1% à 3,5% en poids) affecte principalement γPS qui diminue jusqu’à une valeur de 5 mJ/m2, alors que γDS passe de 30 à 23 mJ/m2. Ces modifications importantes sont attribuées à un changement d'orientation des polymères adsorbés, susceptible de s’être produit au cours de la déshydratation. Après adsorption de polymères synthétiques modèles d'acides humiques, la montmorillonite calcique à l’état sec présente des valeurs de γS inférieures à 50 mJ/m2 qui sont en accord avec les angles de contact solide-eau-vapeur qui sont mesurés.

Type
Research Article
Copyright
Copyright © 1991, The Clay Minerals Society

References

Absolom, D. R. and Neumann, A. W., 1988 Modification of substrate properties through protein adsorption Colloids and Surfaces 30 2545.CrossRefGoogle Scholar
Andreux, F., 1981 Utilisation de molécules modèles de synthèse dans l’étude des processus d’insolubilisation et de biodégradation des polycondensats humiques Bull. Ass. Fr. Etude Sol. Sci. Sol 11 271291.Google Scholar
Andreux, F., Golebiowska, D. and Metche, M., 1980 Polymérisation oxydative des O-diphénols en présence ou non d’amino-acides. Cas des systèmes (catéchol-glycocolle) et (catéchol-diglycylglycine) CR. Ass. Gén. Groupe Polyphenols. Logrono. 9 178188.Google Scholar
Chaney, K. and Swift, R. S., 1984 The influence of organic matter on aggregate stability in some British soils J. Soil Sci. 35 223230.CrossRefGoogle Scholar
Chaney, K. and Swift, R. S., 1986 Studies on aggregate stability J. Soil Sci. 37 337343.CrossRefGoogle Scholar
Chassin, P., 1979 Détermination de l’angle de contact acides humiques-solutions aqueuses de diols. Conséquences sur l’importance relative des mécanismes de destruction des agrégats Ann. Agron. 30 481491.Google Scholar
Chassin, P., Le Berre, B. and Nakaya, N., 1977 Influence des substances humiques sur les propriétés des argiles Clay Miner. 12 261271.CrossRefGoogle Scholar
Chassin, P., Jouany, C. and Quiquampoix, H., 1986 Measurement of the surface free energy of Ca-montmorillonite Clay Miner. 21 899907.CrossRefGoogle Scholar
Chibowski, E. and Staszczuk, P., 1988 Determination of surface free energy of kaolinite Clays & Clay Minerals 36 455461.CrossRefGoogle Scholar
Concaret, J., 1967 Etude des mécanismes de la destruction des agrégats de terre au contact de solutions aqueuses Ann. Agron. 18 65144.Google Scholar
Cornell, P. K., Summers, R. S. and Robert, P. V., 1986 Diffusion of humic acid in dilute aqueous suspension J. Coll. Inter. Sci. 114 149164.CrossRefGoogle Scholar
Evans, L. T. and Russell, E. W., 1959 The adsorption of humic and fulvic acids by clays J. Soil Sci. 10 119132.CrossRefGoogle Scholar
Farmer, V. C., Greenland, D. J. and Hayes, M. H. B., 1978 Water on particle surfaces The Chemistry of Soil Constituents New York Wiley.Google Scholar
Fowkes, F. M., 1964 Dispersion force contributions to surface and interfacial tensions, contact angles, and heats of immersion Adv. Chem. Ser. 43 99111.CrossRefGoogle Scholar
Gerson, D. F., 1981 Methods in surface physics for immunology Immunological Methods 2 105138.CrossRefGoogle Scholar
Giese, R. S., van Oss, C., Norris, J. and Constanzo, P. M., 1989 Surface energies of smectite clay minerals Program Abstracts, Int. Clay Conf., Strasbourg, 1989 158.Google Scholar
Giovannini, G. and Lucchesi, S., 1984 Differential thermal analysis and infrared investigations on soil hydrophobic substances Soil Sci. 137 457463.CrossRefGoogle Scholar
Giovannini, G., Lucchesi, S. and Cervelli, S., 1983 Water repellent substances and aggregate stability in hydrophobic soils Soil Sci. 135 110113.CrossRefGoogle Scholar
Gosh, K. and Schnitzer, M., 1980 Macromolecular structures of humic substances Soil Sci. 129 266276.CrossRefGoogle Scholar
Hamblin, A. P. and Greenland, D. J., 1977 Effect of organic constituents and complexed ions on aggregate stability of some East Anglian silt soils J. Soil Sci. 28 410416.CrossRefGoogle Scholar
Hamilton, W. C., 1972 A technique for the characterization of hydrophilic solid surfaces J. Colloid Inter. Sci. 40 219222.CrossRefGoogle Scholar
Jańczuck, E. and Bialopiotrowicz, T., 1988 Components of surface free energy of some clay minerals Clays & Clay Minerals 36 243248.CrossRefGoogle Scholar
Jouany, C. and Chassin, P., 1987 Determination of the surface energy of clay-organic complexes by contact-angle measurements Colloids and Surfaces 27 289303.CrossRefGoogle Scholar
Le Bissonnais, Y., 1989 Analyse des processus de microfissuration des agrégats à l’humectation Bull. Ass. Fr. Etude Sol. Sci. Sol 27 187199.Google Scholar
Lee, S. B. and Luner, P., 1972 The wetting and interfacial properties of lignins Tappi 55 116121.Google Scholar
Levy, R. and Francis, C. W., 1976 Adsorption and desorption of cadmium by synthetic and natural organo-clay complexes Geoderma 15 361370.CrossRefGoogle Scholar
Monnier, G., 1965 Action de la matière organique sur la stabilité structurale des sols .Google Scholar
Owens, D. K. and Wendt, R. C., 1969 Estimation of the surface free energy of polymers J. Appl. Polymer Sci. 13 17411747.CrossRefGoogle Scholar
Robinson, D. O. and Page, J. B., 1950 Soil aggregate stability Soil Sci. Soc. Amer. Proc. 15 2529.CrossRefGoogle Scholar
Schultz, J., Tsutsumi, K. and Donnet, J. B., 1977 Surface properties of high-energy solids J. Coll. Inter. Sci. 59 272277.CrossRefGoogle Scholar
Shanahan, M. E. R. Cazeneuve, C., Carre, A. and Schultz, J., 1982 Wetting criteria in three phases solid-liquid-liquid systems J. Chim. Phys. 79 241245.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils Oxford Oxford University Press.Google Scholar
Tamai, Y., Makuuchi, K. and Suzuki, M., 1967 Experimental analysis of interfacial forces at the plane surface of solids J. Phys. Chem. 71 41764179.CrossRefGoogle Scholar
Theng, B. K. G., 1979 Formation and Properties of Clay-Polymer Complexes Amsterdam Elsevier.Google Scholar
Theng, B. K. G., 1982 Clay-polymer interactions summary and perspectives Clays & Clay Minerals 30 110.CrossRefGoogle Scholar
Theng, B. K. G. Scharpenseel, H. W. and Bailey, S. W., 1976 The adsorption of 14C-labelled humic acid by montmorillonite Proc. Int. Clay Conf., Mexico City, 1975 Wilmette, Illinois Applied Publishing 643653.Google Scholar
Tschapek, M., Pozzo Ardizzi, G. and De Busseti, S. G., 1973 Wettability of humic acid and its salts Z. Pflanzen. Bodenk. 1 1631.CrossRefGoogle Scholar
Wu, S., 1973 Polar and nonpolar interactions in adhesion J. Adhes. 5 3955.CrossRefGoogle Scholar
Yoder, R. E., 1936 A direct method for aggregate analysis of soils and a study of the physical nature of erosion losses J. Amer. Soc. Agron. 28 337351.CrossRefGoogle Scholar
Young, C. J., 1958 Interaction of water vapor with silica surfaces J. Coll. Sci. 13 6785.CrossRefGoogle Scholar