Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T07:11:06.211Z Has data issue: false hasContentIssue false

Surface Crystal Chemistry of Phyllosilicates Using X-Ray Photoelectron Spectroscopy: A Review

Published online by Cambridge University Press:  01 January 2024

Chiara Elmi*
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, PA 19104-6313, USA
Stephen Guggenheim
Affiliation:
Department of Earth and Environmental Sciences, University of Illinois at Chicago, 845 West Taylor Street, Chicago, IL 60607-7059, USA
Reto Gieré
Affiliation:
Department of Earth and Environmental Science, University of Pennsylvania, 240 S. 33rd Street, Philadelphia, PA 19104-6313, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The characterization of freshly cleaved mica surfaces for surface structure and chemical composition was briefly reviewed and focused on surface crystal chemistry using X-ray photoelectron spectroscopy (XPS) and other surface-sensitive techniques. This paper considers micas, which are useful as a first approximation for the behavior of many clay surfaces. Emphasis was given to phyllosilicate XPS binding energies (“chemical shift”), which were described and used to obtain oxidation state, layer charge, and chemical bonding information from the chemical shifts of different peaks. The chemical shift of the Si2p binding-energy to lower values can result from a negative charge increase because of Si4+ replacement by Al3+ and/or Fe3+. The apparent interlayer coordination number reduction from twelve to eight at muscovite and tetraferri-phlogopite (001) surfaces was indicated by the XPS measured K2p binding-energy and is consistent with bond relaxation. Although chemical shifts are valuable to distinguish chemical bonding and oxidation state, chemical shifts usually cannot distinguish between different Al coordination environments where Al is in both tetrahedral and octahedral sites.

Type
Article
Copyright
Copyright © Clay Minerals Society 2016

References

Anderson, P.R. Swartz, W.E, , 1974 X-ray photoelectron spectroscopy of some aluminosilicates Inorganic Chemistry 13 22932294.CrossRefGoogle Scholar
Andersson, S.L.T. and Howe, R.F., 1989 An X-ray photoelectron study of metal clusters in zeolites The Journal of Physical Chemistry 93 49134920.CrossRefGoogle Scholar
Asami, K. and Hashimoto, K., 1977 The X-ray photoelectron spectra of several oxides of iron and chromium Corrosion Science 17 559570.CrossRefGoogle Scholar
Ash, L.A. Evans, S. and Hiorns, A.G., 1987 Cation ordering in lepidolite and biotite studied by XPD Clay Minerals 22 375386.CrossRefGoogle Scholar
Ash, L.A. Clark, S.L. Evans, S. and Hiorns, A.G., 1988 X-ray photoelectron diffraction studies of the micas lepidolite and biotite Journal of the Chemical Society-Dalton Transactions 4 859879.CrossRefGoogle Scholar
Bancroft, G.M. Brown, J.R. and Fyfe, W.S., 1979 Advances in and applications of X-ray photoelectron spectroscopy (ESCA) in mineralogy and geochemistry Chemical Geology 25 227243.CrossRefGoogle Scholar
Bare, S. R. Knop-Gericke, A. Teschner, D. Havacker, M. Blume, R. Rocha, T. Schloegl, R. Chan, A S Y Blackwell, N. Charochak, M. E. ter Veen, R. and Brongersma, H. H., 2016 Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study Surface Science 648 376382.CrossRefGoogle Scholar
Barr, T.L. Seal, S. He, H. and Klinowski, J., 1995 X-ray photoelectron spectroscopic studies of kaolinite and montmorillonite Vacuum 46 13911395.CrossRefGoogle Scholar
Barr, T.L. Seal, S. Wozniak, K. and Klinowski, J., 1997 ESCA studies of the coordination state of aluminium in oxide environments Journal of the Chemical Society Faraday Transactions, 93, 181186.CrossRefGoogle Scholar
Barr, T.L. Hoppe, E. Dugall, T. Shah, P. and Seal, S., 1999 XPS and bonding: When and why can relaxation effects be ignored Journal of Electron Spectroscopy and Related Phenomena 98–99 95103.CrossRefGoogle Scholar
Baun, W.L., 1980 ISS/SIMS characterization of mica surfaces Surface and Interface Analysis 2 145147.CrossRefGoogle Scholar
Beaulieu, B.T. and Savage, K.S., 2005 Arsenate adsorption structures on aluminum oxide and phyllosilicate mineral surfaces in smelter-impacted soils Environmental Science & Technology 39 35713579.CrossRefGoogle ScholarPubMed
Bhattacharyya, K.G., 1993 XPS study of mica surfaces Journal of Electron Spectroscopy and Related Phenomena 63 289306.CrossRefGoogle Scholar
Biino, G.G. and Groning, P., 1998 Cleavage mechanism and surface chemical characterization of phengitic muscovite and muscovite as constrained by X-ray photoelectron spectroscopy Physics and Chemistry of Minerals 25 168181.CrossRefGoogle Scholar
Biino, G.G. Mannella, N. Kay, A. Mun, B. and Fadley, C.S., 1999 Surface chemical characterization and surface diffraction effects of real margarite (001): An angle-resolved XPS investigation American Mineralogist 84 629638.CrossRefGoogle Scholar
Brigatti, M.F. Guggenheim, S., Mottana, A. Sassi, F.P. Thompson, J.B. Jr and Guggenheim, S., 2002 Mica crystal chemistry and the influence of pressure, temperature, and solid solution on atomistic models. In Micas: crystal chemistry and metamorphic petrology Micas: Crystal Chemistry and Metamorphic Petrology Washington, D.C Mineralogical Society of America and the Geochemical Society 197.Google Scholar
Brigatti, M.F. Malferrari, D. Laurora, A. Elmi, C., Brigatti, M.F. and Mottana, A., 2011 Structure and mineralogy of layer silicates: recent perspectives and new trends Layered Mineral Structures and their Application in Advanced Technologies 171.CrossRefGoogle Scholar
Briggs, D. and Seah, M.P., 1990 Practical Surface Analysis, second edition, Vol. 1. Auger and X-ray Photoelectron Spectroscopy Chichester, UK John Wiley & Sons.Google Scholar
Brion, D., 1980 Etude par spectroscopie de photoelectrons de la degradation superficielle de FeS″ CuFeS″, ZnS, and PbS a l’air dans l’eau Applied Surface Science 5 133152.CrossRefGoogle Scholar
Bronold, M. Tomm, Y. and Jaegermann, W., 1994 Surface states on cubic d-band semiconductor pyrite (FeS2) Surface Science 314 L931L936.CrossRefGoogle Scholar
Carretero, M.I. and Pozo, M., 2009 Clay and non-clay minerals in the pharmaceutical industry part I Excipients and medical applications. Applied Clay Science 46 7380.CrossRefGoogle Scholar
Carretero, M.I. and Pozo, M., 2010 Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II Active ingredients. Applied Clay Science 47 171181.CrossRefGoogle Scholar
Chan, D. and Richmond, P., 1977 Van der Waals forces for mica and quartz: Calculations from complete dielectric data Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 353 163176.Google Scholar
Christenson, H.K., 1993 Adhesion and surface energy of mica in air and water The Journal of Physical Chemistry 97 1203412041.CrossRefGoogle Scholar
Christenson, H.K. and Thomson, N.H., 2016 The nature of the air-cleaved mica surface Surface Science Reports 71 367390.CrossRefGoogle Scholar
Conner, G.R., 1978 Combination analysis of metal oxides using ESCA, AES, and SIMS Journal of Vacuum Science and Technology 15 343347.CrossRefGoogle Scholar
Czímerová, A. Bujdák, J. and Dohrmann, R., 2006 Traditional and novel methods for estimating the layer charge of smectites Applied Clay Science 34 213.CrossRefGoogle Scholar
Descostes, M. Mercier, F. Thromat, N. Beaucaire, C. and Gautier-Soyer, M., 2000 Use of XPS in the determination of chemical environment and oxidation state of iron and sulfur samples: Constitution of a data basis in binding energies for Fe and S reference compounds and applications to the evidence of surface species of an oxidized pyrite in a carbonate medium Applied Surface Science 165 288302.CrossRefGoogle Scholar
Domen, K. and Chuang, T.J., 1989 Laser induced photodissociation and desorption. II. CH2I2 adsorbed on Ag The Journal of Chemical Physics 90 33323338.CrossRefGoogle Scholar
Dorel, S. Pesty, F. and Garoche, P., 2000 Oscillating low-energy electron diffraction for studying nanostructured surfaces Surface Science 446 294300.CrossRefGoogle Scholar
Ebina, T. Iwasaki, T. Chatterjee, A. Katagiri, M. and Stucky, G.D., 1997 Comparative study of XPS and DFT with reference to the distributions of Al in tetrahedral and octahedral sheets of phyllosilicates Journal of Physical Chemistry B 101 11251129.CrossRefGoogle Scholar
Elmi, C. Brigatti, M.F. Guggenheim, S. Pasquali, L. Montecchi, M. Laurora, A M ^D and Nannarone, S., 2013 Sodian muscovite-2M1: Crystal chemistry and surface features The Canadian Mineralogist 51 319328.CrossRefGoogle Scholar
Elmi, C. Brigatti, M.F. Guggenheim, S. Pasquali, L. Montecchi, M. and Nannarone, S., 2014 Crystal chemistry and surface configurations of two iron-bearing trioctahedral mica-1M polytypes Clays and Clay Minerals 62 243252.CrossRefGoogle Scholar
Elmi, C. Brigatti, M.F. Guggenheim, S. Pasquali, L. Montecchi, M. and Nannarone, S., 2014 Crystal chemistry and surface configurations of two polylithionite-1M crystals American Mineralogist 99 20492059.CrossRefGoogle Scholar
Evans, S ^AG, 1996 Angle-resolved X-ray photoelectron studies of cleavage in chlorites Clays and Clay Minerals 44 398407.CrossRefGoogle Scholar
Evans, S ^E, 1980 X-ray photoelectron studies of titanium in biotite and phlogopite Clay Minerals 15 209218.CrossRefGoogle Scholar
Evans, S ^E, 1982 X-ray photelectron diffraction studies of lepidolite Clay Minerals 17 443452.CrossRefGoogle Scholar
Evans, S. Adams, J.M. and Thomas, J.M., 1979 The surface structure and composition of layered silicate minerals: Novel insights from X-ray photoelectron diffraction, K-emission spectroscopy and cognate techniques Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 292 563591.Google Scholar
Fadley, C.S., Bachrach, R.Z., 1992 The study of surface structures by photoelectron diffraction and Auger electron diffraction Synchrotron radiation research: Advances in surface and interface science techniques Boston, MA, USA Springer US 421518.CrossRefGoogle Scholar
Fenter, P. and Sturchio, N.C., 2004 Mineral—water interfacial structures revealed by synchrotron X-ray scattering Progress in Surface Science 77 171258.CrossRefGoogle Scholar
Fu, Y.-T. Zartman, G.D. Yoonessi, M. Drummy, L.F. and Heinz, H., 2011 Bending of layered silicates on the nanometer scale: Mechanism, stored energy, and curvature limits The Journal of Physical Chemistry C 115 2229222300.CrossRefGoogle Scholar
Geatches, D.L. and Wilcox, J., 2014 Ab initio investigations of dioctahedral interlayer-deficient mica: Modelling 1M polymorphs of illite found within gas shale European Journal of Mineralogy 26 127144.CrossRefGoogle Scholar
Gershenkop, A.S. Gerasimova, L.G. Khokhulya, M.S. Zhdanova, N.M. and Okhrimenko, R.F., 2001 Preparation of flaky pearly pigments Inorganic Materials 37 531534.CrossRefGoogle Scholar
Giese, R.F. Jr, 1974 Surface energy calculations for muscovite Nature 248 580581.CrossRefGoogle Scholar
Giese, R.F. Jr, 1975 The effect of F/OH substitution on some layer-silicate minerals Zeitschrift für Kristallographie - Crystalline Materials 141 138144.CrossRefGoogle Scholar
Giese, R.F. Jr, 1977 The influence of hydroxyl orientation, stacking sequence, and ionic substitutions on the interlayer bonding of micas Clays and Clay Minerals 25 102104.CrossRefGoogle Scholar
Giese, R.F. Jr, 1978 The electrostatic interlayer forces of layer structure minerals Clays and Clay Minerals 26 5157.CrossRefGoogle Scholar
Grosvenor, A.P. Kobe, B.A. Biesinger, M.C. and McIntyre, N.S., 2004 Investigation of multiplet splitting of Fe2p XPS spectra and bonding in iron compounds Surface and Interface Analysis 36 15641574.CrossRefGoogle Scholar
Guggenheim, S., Brigatti, M.F. and Mottana, A., 2011 An overview of order/disorder in hydrous phyllosilicates Layered Mineral Structures and their Application in Advanced Technologies 72111.CrossRefGoogle Scholar
Gutshall, P.L. Bryant, P.J. and Cole, G.M., 1970 Cleavage surface energy of phlogopite mica American Mineralogist 55 14321434.Google Scholar
Hawn, D.D. and Dekoven, B.M., 1987 Deconvolution as a correction for photoelectron inelastic energy-losses in the core level XPS spectra of iron-oxides Surface and Interface Analysis 10 6374.CrossRefGoogle Scholar
Haycock, D.E. Kasrai, M. Nicholls, C.J. and Urch, D.S., 1978 The electronic structure of magnesium hydroxide (brucite) using X-ray emission, X-ray photoelectron, and Auger spectroscopy Journal of the Chemical Society Dalton Transactions, 12, 17911796.CrossRefGoogle Scholar
Hinnen, C. Imbert, D. Siffre, J.M. and Marcus, P., 1994 An in situ XPS study of sputter-deposited aluminium thin films on graphite Applied Surface Science 78 219231.CrossRefGoogle Scholar
Hochella, M.F., Hochella, M.F.J. and White, A.F., 1990 Atomic structure, microtopography, composition, and reactivity of mineral surfaces Mineral-water interface geochemistry Washington, D.C Mineralogical Society of America and the Geochemical Society 87132.CrossRefGoogle Scholar
Hochella, M.F.J., Vaughan, D.J. and Pattrick, R.A.D., 1995 Mineral surfaces: Their characterization and their chemical, physical and reactive nature Mineral Surfaces London The Mineralogical Society of Great Britain & Ireland. 1760.Google Scholar
Ilton, E.S. and Veblen, D.R., 1994 Chromium sorption by phlogopite and biotite in acidic solutions at 25°C: Insights from X-ray photoelectron spectroscopy and electron microscopy Geochimica et Cosmochimica Acta 58 27772788.CrossRefGoogle Scholar
Ilton, E.S. Moses, C.O. and Veblen, D.R., 2000 Using X-ray photoelectron spectroscopy to discriminate among different sorption sites of micas: With implications for heterogeneous reduction of chromate at the mica-fluid interface Geochimica et Cosmochimica Acta 64 14371450.CrossRefGoogle Scholar
Jerome, R. Teyssie, P. Pireaux, J.J. and Verbist, J.J., 1986 Surface-analysis of polymers end-capped with metal carboxylates using X-ray photoelectron spectroscopy Applied Surface Science 27 93105.CrossRefGoogle Scholar
Junru, T. Yunfang, H. Wenxiang, H. Xiuzeng, C. and Xiansong, F., 2002 The preparation and characteristics of cobalt blue mica coated titania pearlescent pigment Dyes and Pigments 52 215222.CrossRefGoogle Scholar
Kerkhof, FPJM and Moulijn, J.A., 1979 Quantitative analysis of xps intensities for supported catalysts The Journal of Physical Chemistry 83 16121619.CrossRefGoogle Scholar
Koppelman, M.H., Stucki, J.W. and Banwart, W.L., 1979 Application of X-ray photoelectron spectroscopy to the study of mineral surface chemistry Advanced Chemical Methods for Soil and Clay Mineral Research: Proceedings of the NATO Advanced Study Institute held at the University of Illinois, July 23–August 4, 1979 205242.CrossRefGoogle Scholar
Koppelman, M.H. Emerson, A.B. and Dillard, J.G., 1980 Adsorbed Cr(III) on chlorite, illite, and kaolinite Clays and Clay Minerals 28 119124.CrossRefGoogle Scholar
Kuwahara, Y., 1999 Muscovite surface structure imaged by fluid contact mode AFM Physics and Chemistry of Minerals 26 198205.CrossRefGoogle Scholar
Kuwahara, Y., 2001 Comparison of the surface structure of the tetrahedral sheets of muscovite and phlogopite by AFM Physics and Chemistry of Minerals 28 18.CrossRefGoogle Scholar
Langevoort, J.C. Sutherland, I. Hanekamp, L.J. and Gellings, P.J., 1987 On the oxide formation on stainless steels AISI 304 and incoloy 800H investigated with XPS Applied Surface Science 28 167179.CrossRefGoogle Scholar
Lee, S.S. Fenter, P. Park, C. Sturchio, N.C. and Nagy, K.L., 2010 Hydrated cation speciation at the muscovite (001)-water interface Langmuir 26 1664716651.CrossRefGoogle ScholarPubMed
Lee, S.S. Fenter, P. Nagy, K.L. and Sturchio, N.C., 2012 Monovalent ion Adsorption at the muscovite (001—solution interface: Relationships among ion coverage and speciation, interfacial water structure, and substrate relaxation Langmuir 28 86378650.CrossRefGoogle ScholarPubMed
Lee, S.S. Schmidt, M. Laanait, N. Sturchio, N.C. and Fenter, P., 2013 Investigation of structure, adsorption free energy, and overcharging behavior of trivalent yttrium adsorbed at the muscovite (001)—water interface The Journal of Physical Chemistry C 117 2373823749.CrossRefGoogle Scholar
Maisch, R. Stahlecker, O. and Kieser, M., 1996 Mica pigments in solvent free coatings systems Progress in Organic Coatings 27 145152.CrossRefGoogle Scholar
Marcelli, A. Cibin, G. Cinque, G. Mottana, A. and Brigatti, M. F., 2006 Polarized XANES spectroscopy: The K edge of layered K-rich silicates Radiation Physics and Chemistry 75 15961607.CrossRefGoogle Scholar
Mathieu, H.J., Vickerman, J.C. and Gilmore, I.S., 2009 Auger electron spectroscopy Surface Analysis — The Principal Techniques, 2nd Edition 945.CrossRefGoogle Scholar
Mathieu, H.J. and Landolt, D., 1986 An investigation of thin oxide films thermally grown in situ on Fe-24Cr and Fe24Cr-11Mo by Auger electron spectroscopy and X-ray photoelectron spectroscopy Corrosion Science 26 547559.CrossRefGoogle Scholar
Maurice, P.A., 2009.Environmental Surfaces and Interfaces. From the Nanoscale to the Global ScaleGoogle Scholar
Mekki, A. Holland, D. McConville, C.F. and Salim, M., 1996 An XPS study of iron sodium silicate glass surfaces Journal of Non-Crystalline Solids 208 267276.CrossRefGoogle Scholar
Metsik, M.S., 1972 Splitting of mica crystals and surface energy The Journal of Adhesion 3 307314.CrossRefGoogle Scholar
Mittal, V.K. Bera, S. Nithya, R. Srinivasan, M.P. Velmurugan, S. and Narasimhan, S.V., 2004 Solid state synthesis of Mg-Ni ferrite and characterization by XRD and XPS Journal of Nuclear Materials 335 302310.CrossRefGoogle Scholar
Moore, D.E. and Lockner, D.A., 2004 Crystallographic controls on the frictional behavior of dry and water-saturated sheet structure minerals Journal of Geophysical Research 109 B03401.CrossRefGoogle Scholar
Müller, K. and Chang, C.C., 1968 Low energy electron diffraction observations of electric dipoles on mica surfaces Surface Science 8 455458.CrossRefGoogle Scholar
Müller, K. and Chang, C.C., 1969 Electric dipoles on clean mica surfaces Surface Science 14 3951.CrossRefGoogle Scholar
Obreimoff, J.W., 1930 The splitting strength of mica Proceedings of the Royal Society of London A: Mathematical, Physical and Engineering Sciences 127 290297.Google Scholar
Ostendorf, F. Schmitz, C. Hirth, S. Kuhnle, A. Kolodziej, J.J. and Reichling, M., 2008 How flat is an air-cleaved mica surface? Nanotechnology 19 305705.CrossRefGoogle ScholarPubMed
Poppa, H. and Elliot, A.G., 1971 The surface composition of mica substrates Surface Science 24 149163.CrossRefGoogle Scholar
Ratner, B.D. Castner, D.G., Vickerman, J.C. and Gilmore, I.S., 2009 Electron spectroscopy for chemical analysis Surface Analysis — The Principal Techniques, 2nd Edition 47112.CrossRefGoogle Scholar
Remy, M.J. Genet, M.J. Poncelet, G. Lardinois, P.F. and Notte, P.P., 1992 Investigation of dealuminated mordenites by X-ray photoelectron spectroscopy The Journal of Physical Chemistry 96 26142617.CrossRefGoogle Scholar
Sakuma, H., 2013 Adhesion energy between mica surfaces: Implications for the frictional coefficient under dry and wet conditions Journal of Geophysical Research: Solid Earth 118 60666075.CrossRefGoogle Scholar
Sarapatka, T.J., 1993 Palladium-induced charge transports with palladium/alumina/aluminum interface formation The Journal of Physical Chemistry 97 1127411277.CrossRefGoogle Scholar
Seyama, H. and Soma, M., 1984 X-ray photoelectron spectroscopic study of montmorillonite containing exchangeable divalent cations Journal of the Chemical Society Faraday Transactions 1: Physical Chemistry in Condensed Phases, 80, 237248.CrossRefGoogle Scholar
Seyama, H ^M, 1985 Bonding-state characterization of the constitutent elements of silicate minerals by X-ray photoelectron spectroscopy Journal of Chemical Society, Faraday Transactions I 81 485495.CrossRefGoogle Scholar
Seyama, H ^M, 1986 X-ray photoelectron spectroscopic study of the effect of heating on montmorillonite containing sodium and potassium cations Clays and Clay Minerals 34 672676.CrossRefGoogle Scholar
Seyama, H ^M, 1987 Fe2p spectra of silicate minerals Journal of Electron Spectroscopy and Related Phenomena 42 97101.CrossRefGoogle Scholar
Seyama, H ^M, 2003 Surface-analytical studies on environmental and geochemical surface processes Analytical Sciences 19 487497.CrossRefGoogle ScholarPubMed
Seyama, H. Soma, M. Theng, B.K.G., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 X-ray photoelectron spectroscopy In Handbook of Clay Science 865878.CrossRefGoogle Scholar
Shaw, S.A. Peak, D. and Hendry, M.J., 2009 Investigation of acidic dissolution of mixed clays between pH 1.0 and −3.0 using Si and Al X-ray absorption near edge structure Geochimica et Cosmochimica Acta 73 41514165.CrossRefGoogle Scholar
Somorjai, G.A. and Li, Y., 2011 Impact of surface chemistry Proceeding of the National Academy of Science of the United States of America 108 917924.CrossRefGoogle ScholarPubMed
Steiner, P. Reiter, F.J. Höchst, H. Hüfner, S. and Fuggle, J.C., 1978 Lineshape of the KL2L3(1D2) auger line in magnesium and sodium metal Physics Letters A 66 229232.CrossRefGoogle Scholar
Strohmeier, B.R., 1994 Characterization of an activated alumina claus catalyst by XPS Surface Science Spectra 3 141146.CrossRefGoogle Scholar
Stucki, J.W. Roth, C.B. and Baitinger, W.E., 1976 Analysis of iron-bearing clay minerals by ESCA Clays and Clay Minerals 24 289292.CrossRefGoogle Scholar
Tenório Cavalcante, P.M. Dondi, M. Guarini, G. Barros, F.M. and Benvindo da Luz, A., 2007 Ceramic application of mica titania pearlescent pigments Dyes and Pigments 74 18.CrossRefGoogle Scholar
Vantelon, D. Belkhou, R. Bihannic, I. Michot, L.J. Montarges-Pelletier, E. and Robert, J.L., 2009 An XPEEM study of structural cation distribution in swelling clays. I. Synthetic trioctahedral smectites Physics and Chemistry of Minerals 36 593602.CrossRefGoogle Scholar
Wagner, C.D., 1980 Studies of the charging insulators in ESCA Journal of Electron Spectroscopy and Related Phenomena 18 345349.CrossRefGoogle Scholar
Wagner, C.D. Gale, L.H. and Raymond, R.H., 1979 Two-dimensional chemical state plots: A standardized data set for use in identifying chemical states by X-ray photoelectron spectroscopy Analytical Chemistry 51 466482.CrossRefGoogle Scholar
Wagner, C.D. Passoja, D.E. Hillery, H.F. Kinisky, T.G. Six, H.A. Jansen, W.T. and Taylor, J.A., 1982 Auger and photoelectron line energy relationships in aluminum—oxy-oxygen and silicon—oxygen compounds Journal of Vacuum Science and Technology 21 933944.CrossRefGoogle Scholar
Watts, J.F., 2010 The potential for the application of X-ray photoelectron spectroscopy in forensic science Surface and Interface Analysis 42 358362.CrossRefGoogle Scholar