Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-26T07:59:16.989Z Has data issue: false hasContentIssue false

Surface area and layer charge of smectite from CEC and EGME/H2O-retention measurements

Published online by Cambridge University Press:  01 January 2024

Jan Środoń*
Affiliation:
Institute of Geological Sciences PAN, Senacka 1, 31002, Krakow, Poland
Douglas K. McCarty
Affiliation:
Chevron ETC, 3901 Briarpark, Houston, TX 77042, USA
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The total specific surface area (TSSA) and smectitic layer charge (Qs) calculated from the structural formulae and unit-cell dimensions of 12 pure smectite samples were used as a reference in the design and evaluation of TSSA and Qs measurement techniques based on cation exchange capacity (CEC), H2O retention at 47% RH, and ethylene glycol monoethyl ether (EGME) retention. A thermogravimetric analysis-mass spectrometry (TGA-MS) technique was used to study the release of H2O from smectite on heating, and to introduce a correction for H2O remaining in the smectite after heating to 110°C, because the sample weight at this temperature has been used routinely as a reference in CEC and EGME sorption measurements. A temperature of 200°C was found to be the optimum reference for such measurements.

A good agreement between Qs from the structural formula and from CEC was obtained when this correction was applied. The TSSA of smectite was measured with similar accuracy (mean error of ±5–7%) by three techniques: (1) using mean H2O coverage; (2) using mean EGME coverage; and (3) using a combination of H2O coverage and CEC. A reduction of the mean error from 5–7% to 4% can be obtained by averaging these measurements, and a further reduction to 3% by introducing corrections for the dependence of H2O and EGME coverage on layer charge. The study demonstrates that Ca2+-smectite samples at 47% RH have H2O contents corresponding to 88–107% of the theoretical mass of a monolayer and offers an explanation of this variation.

Type
Research Article
Copyright
Copyright © 2008, The Clay Minerals Society

References

Ammann, L. Bergaya, F. and Lagaly, G., 2005 Determination of the cation exchange capacity of clays with copper complexes revisited Clay Minerals 40 441453.CrossRefGoogle Scholar
Avena, M.J. Valenti, L.E. Pfaffen, V. and De Pauli, C.P., 2001 Methylene blue dimerization does not interfere in surface area measurements of kaolinite and soils Clays and Clay Minerals 49 168173.CrossRefGoogle Scholar
Bardon, C. Bieber, M.T. Cuiec, L. Jacquin, C. Courbot, A. Deneuville, G. Simon, J.M. Voirin, J.M. Espy, M. Nectoux, A. and Pellerin, A., 1983 Recommandations pour la determination experérimentale de la capacité d’échange de cations des milieux argileux Revue de l’ Institut Français du Pétrole 38 621626.Google Scholar
Bergaya, F. and Vayer, M., 1997 CEC of clays: measurement by adsorption of a copper ethylendiamine complex Applied Clay Science 12 275280.CrossRefGoogle Scholar
Bigorre, F. Tessier, D. and Pedro, G., 2000 Contribution des argiles et des matiéres organiques á la rétention de l’eau dans les sols. Signification et role fondamental de la capacité d’échange en cations Comptes Rendu Academy of Science Paris, Sciences de la Terre et des planetes 330 245250.Google Scholar
Blum, A.E. and Eberl, D.D., 2004 Measurement of clay surface areas by polyvinyl pyrrolidone (PVP) sorption and its use for quantifying illite and smectite abundance Clays and Clay Minerals 52 589602.CrossRefGoogle Scholar
Brindley, G.W. and Brown, G., 1980 Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Carter, D.L. Heilman, M.D. and Gonzalez, C.L., 1965 Ethylene glycol monoethyl ether for determining surface area of silicate minerals Soil Science 100 356360.CrossRefGoogle Scholar
Cases, J.M. Berend, I. Francois, M. Uriot, J.P. Michot, L.J. and Thomas, F., 1997 Mechanism of adsorption and desorption of water vapor by homoionic montmorillonite: 3. the Mg2+, Ca2+, Sr2+ and Ba2+ exchanged forms Clays and Clay Minerals 45 822.CrossRefGoogle Scholar
Chabra, R., Pleysier, J., and Cremers, A. (1975) The measurement of cation exchange capacity and exchangeable cations in soils. A new method. Proceedings of the International Clay Conference, 1975, Mexico, 439449.Google Scholar
Chiou, C.T. and Rutherford, D.W., 1997 Effects of exchanged cation and layer charge on the sorption of water and EGME vapors on montmorillonite clays Clays and Clay Minerals 45 867880.CrossRefGoogle Scholar
Chiou, C.T. Rutherford, D.W. and Manes, M., 1993 Sorption of N2 and EGME vapors on some soils, clays, and mineral oxides and determination of sample surface areas by use of sorption data Environmental Science & Technology 27 15871594.CrossRefGoogle Scholar
Churchman, G.J. Burke, C.M. and Parfitt, R.L., 1991 Comparison of various methods for the determination of specific surfaces of subsoils Journal of Soil Science 42 449461.CrossRefGoogle Scholar
Ciesielski, H. and Steckerman, T., 1997 A comparison between three methods for the determination of cation exchange capacity and exchangeable cations in soils Agronomie 17 916.CrossRefGoogle Scholar
Desprairies, A., 1983 Relation entre le parametre b des smectites et leur contenu en fer et magnesium. Application a l’etude des sediments Clay Minerals 18 165175.CrossRefGoogle Scholar
Dohrmann, R. and Echle, W., 1994 Eine kritische Betrachtung der Silber-Thioharnstoff-Methode (AgTu) zur Bestimmung der Kationenaustauschkapazitaet und Vorstellung eines neuen methodischen Ansatzes Berichte der Deutschen Ton- und Tonmineralgruppe 3 213222.Google Scholar
Drits, V.A. and McCarty, D.K., 2007 The nature of structure-bonded H2O in illite and leucophyllite from dehydratation and dehydroxylation experiments Clays and Clay Minerals 55 4558.CrossRefGoogle Scholar
Dyal, R.S. and Hendricks, S.B., 1950 Total surface of clays in polar liquids as a characteristic index Soil Science 69 421432.CrossRefGoogle Scholar
Eberl, D.D., Środoń, J., and Northrop, H.R. (1986) Potassium fixation in smectite by wetting and drying. Pp. 296326 in: Geochemical Processes at Mineral Surfaces (Davis, J.A. and Hayes, K.F., editors). ACS Symposium Series 323, American Chemical Society.CrossRefGoogle Scholar
Emmerich, K. and Wolters, F., 2005 The role of crosschecks for the classification of montmorillonite Berichte der Deutschen Ton- und Tonmineralgruppe 11 1819.Google Scholar
Ferrage, E. Lanson, B. Sakharov, B.A. and Drits, V.A., 2005 Investigation of smectite hydration properties by modeling experimental X-ray diffraction patterns. Part I. Montmorillonite hydration properties American Mineralogist 90 13581374.CrossRefGoogle Scholar
Ferrage, E. Lanson, B. Malikova, N. Plançon, A. Sakharov, B.A. and Drits, V.A., 2005 New insights in the distribution of interlayer H2O molecules in bi-hydrated smectite from X-ray diffraction profile modeling of 001 reflections Chemistry of Materials 17 34993512.CrossRefGoogle Scholar
Gates, W.P. Slade, P.G. Manceau, A. and Lanson, B., 2002 Site occupancies by iron in nontronites Clays and Clay Minererals 50 223239.CrossRefGoogle Scholar
Güven, N. and Bailey, S.W., 1988 Smectites Hydrous Phyllosilicates Washington D.C Mineralogical Society of America 497559.CrossRefGoogle Scholar
Hendricks, S.B. Nelson, R.A. and Alexander, L.T., 1940 Hydration mechanism of the clay mineral montmorillonite saturated with various cations Journal of the American Chemical Society 62 14571464.CrossRefGoogle Scholar
Jackson, M.L., 1975 Soil Chemical Analysis — Advanced Course Madison, Wisconsin, USA Published by the author.Google Scholar
Kaufhold, S., 2005 Influence of layer charge density on the determination of the internal surface area of smectites Berichte der Deutschen Ton- und Tonmineralgruppe 11 2026.Google Scholar
Khoury, H.N. and Eberl, D.D., 1981 Montmorillonite from the Amargosa Desert, southern Nevada, USA Neues Jahrbuch fur Mineralogie 141 134141.Google Scholar
Kodama, H. and Brydon, J.E., 1968 Dehydroxylation of microcrystalline muscovite Transactions of the Faraday Society 551 31123119.CrossRefGoogle Scholar
Köster, H.M. Erlicher, U. Gilg, H.A. Jordan, R. Murad, E. and Onnich, K., 1999 Mineralogical and chemical characteristics of five nontronites and Fe-rich smectites Clay Minerals 34 579599.CrossRefGoogle Scholar
Lagaly, G. and Weiss, A. (1969) Determination of the layer charge in mica-type layer silicates. Proceedings of the International Clay Conference, Tokyo, 6180.Google Scholar
Laird, D.A., 1999 Layer charge influences on the hydration of expandable 2:1 phyllosilicates Clays and Clay Minerals 47 630636.CrossRefGoogle Scholar
MacEwan, D.M.C. Wilson, M.J., Brindley, G.W. and Brown, G., 1980 Interlayer and intercalation complexes of clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society 197248.CrossRefGoogle Scholar
Meier, L.P. and Kahr, G., 1999 Determination of the cation exchange capacity (CEC) of clay minerals using the complexes of copper(II) ion with triethylenetetramine and tetraethylenepentamine Clays and Clay Minerals 47 386388.CrossRefGoogle Scholar
Mermut, A.R. and Lagaly, G., 2001 Baseline studies of The Clay Minerals Society Source Clays: layer-charge determination and characteristics of those minerals containing 2:1 layers Clays and Clay Minerals 49 393397.CrossRefGoogle Scholar
Michot, L.J. Villieras, F., Bergaya, F. Theng, B.K.G. and Lagaly, G., 2006 Surface area and porosity Handbook of Clay Science Amsterdam Elsevier 965978.CrossRefGoogle Scholar
Moore, D.M. and Reynolds, R.C., 1997 X-ray diffraction and the Identification and Analysis of Clay Minerals Oxford-New York Oxford University Press 378 pp.Google Scholar
Nadeau, P.H. Wilson, M.J. McHardy, W.J. and Tait, J., 1984 Interstratified clays as fundamental particles Science 225 923925.CrossRefGoogle ScholarPubMed
Newman, A.C.D., 1983 The specific surface of soils determined by water sorption Journal of Soil Science 34 2332.CrossRefGoogle Scholar
Newman, A.C.D. and Newman, A.C.D., 1987 The interaction of water with clay mineral surfaces Chemistry of Clays and Clay Materials Essex, UK Longman 237271.Google Scholar
Orsini, L. and Remy, J.-C., 1976 Utilisation du chlorure de cobaltihexammine pour la determination simultanee de la capacite d’echange et des bases echangeables des sols Science du Sol 4 269275.Google Scholar
Quirk, J.P. and Murray, R.S., 1999 Appraisal of the ethylene glycol monoethyl ether method for measuring hydratable surface area of clays and soils Soil Science Society of America Journal 63 839849.CrossRefGoogle Scholar
Reichenbach, H. Graf, V. and Beyer, J., 1994 Dehydration and rehydration of vermiculites: I. Phlogopitic Mg-vermiculite Clay Minerals 29 327340.CrossRefGoogle Scholar
Rinnert, E. Carteret, C. Humbert, B. Fragneto-Cusani, G. Ramsay, J.D.F. Delville, A. Robert, J.-L. Bihannic, I. Pelletier, M. and Michot, L.J., 2005 Hydration of a synthetic clay with tetrahedral charges: a multidisciplinary experimental and numerical study Journal of Physical Chemistry B 109 2374523759.CrossRefGoogle ScholarPubMed
Ristori, G.G. Sparvoli, E. Landi, L. and Martelloni, C., 1989 Measurement of specific surface areas of soils by p-nitrophenol adsorption Applied Clay Science 4 521532.CrossRefGoogle Scholar
Sato, T. Watanabe, T. and Otsuka, R., 1992 Effects of layer charge, charge location, and energy change on expansion properties of dioctahedral smectites Clays and Clay Minerals 40 103113.CrossRefGoogle Scholar
Slonimskaya, M.V. Drits, V.A. Finko, V.I. and Salyn, A.L., 1978 The nature of interlayer water in fine-dispersed muscovites Izvestiya Akademii Nauk SSSR, seriya geologicheskaya 10 95104 (in Russian).Google Scholar
Środoń, J. Elsass, F. McHardy, W.J. and Morgan, D.J., 1992 Chemistry of illite-smectite inferred from TEM measurements of fundamental particles Clay Minerals 27 137158.CrossRefGoogle Scholar
Theng, B.K.G. Ristori, G.G. Santi, C.A. and Percival, H.J., 1999 An improved method for determining the specific surface areas of topsoils with varied organic matter content, texture and clay mineral composition European Journal of Soil Science 50 309316.CrossRefGoogle Scholar
Tiller, K.G. and Smith, L.H., 1990 Limitations of EGME retention to estimate the surface area of soils Australian Journal of Soil Research 28 126.CrossRefGoogle Scholar
Watanabe, T. and Sato, T., 1988 Expansion characteristics of montmorillonite and saponite under various relative humidity conditions Clay Science 7 129138.Google Scholar