Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T07:55:50.312Z Has data issue: false hasContentIssue false

Surface Acidity of Montmorillonites

Published online by Cambridge University Press:  01 July 2024

M. Frenkel*
Affiliation:
Department of Geology, The Hebrew University of Jerusalem, Jerusalem, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Surface acidity of almost homoionic montmorillonites was measured by titrating selected Hammett indicators adsorbed on the clay with n-butylamine.

As expected, the acidity is strongly affected by the exchangeable cations and the degree of hydration of the clay. Greater polarizing ability of the interlayer cations increases both the strength and number of acid sites per H0 value. The acidity of ‘activated’ or heated H-montmorillonite does not exceed that of untreated H-montmorillonite. The origin of the negative charge in the montmorillonite appears to affect the acidity of the clay.

It is concluded that the very high acidities reported in the literature (H0 < −5·6) are apparent only and are due to physisorption of the indicator.

Résumé

Résumé

L’acidité de surface de montmorillonites pratiquement homoioniques a été mesurée en titrant par la n butylamine des indicateurs de Hammett sélectionnés, adsorbés sur l’argile.

Comme on peut s’y attendre, l’acidité est fortement affectée par les cations échangeables et le degré d’hydratation de l’argile.

Un pouvoir polarisant des cations interfeuillets plus élevé augmente à la fois la force et le nombre des sites acides pour une valeur de H0.

L’acidité de la montmorillonite-H “activée” ou chauffée ne dépasse pas celle de la montmorillonite-H non traitée. L’origine de la charge négative de la montmorillonite semble affecter l’acidité de l’argile.

On conclut que les très fortes acidités citées dans la littèrature (H0 inférieur à −5,6) sont seulement apparantes et sont dues à la physisorption de l’indicateur.

Kurzreferat

Kurzreferat

Die Oberflächenazidität von nahezu homoionischen Montmorilloniten wurde durch Titration von an dem Ton adsorbierten ausgewählten Hammet-Indikatoren mit n-Butylamin gemessen.

Wie erwartet, wird die Azidität stark durch die Art des austauschbaren Kations und den Hydratationsgrad des Tons beeinflußt. Größere Polarisierbarkeit der Zwischenschichtkationen erhöht sowohl die Stärke als auch die Anzahl der sauren Austauschplätz pro H0-Wert. Die Azidität von ‘aktiviertem’ oder erhitztem H-Montmorillonit übersteigt nicht diejenige von unbehandeltem H-Montmorillonit. Die Herkunft der negativen Ladung im Montmorillonit scheint die Azidität des Tons zu beeinflussen.

Es wird geschlossen, daß die sehr hohen Aziditäten, über die in der Literatur berichtet wird H0 < −5,6), nur scheinbaren Charakter haben und die Folge einer physikalischen Adsorption des Indikators sind.

Резюме

Резюме

Поверхностная кислотность большей части гомоионных монтмориллонитов измерялась титрованием избранных указателей Хаммет адсорбированных на глине и-бутиламином. Как предполагалось, на кислотность сильно влияют обменные катионы и степень гидратации глины. С увеличением поляризационной способности катионов промежуточных слоев увеличиваются как кислотность так и количество кислых участков на величину числа H0.. Кислотность «активированных» или нагретых H-монтмориллонитов не превышает кислотности необработанных. Появление отрицательного заряда монтмориллонита повидимому влияет на кислотность глины. B заключении говорится, что очень высокие числа кислотности, указываемые в литературе (H0<—5,6), являются только кажущимися и зависят от физической сорбции индикатора.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1974

References

Bailey, G. W., White, J. L. and Rothberg, T., (1968) Adsorption of organic herbicides by montmorillonite: Role of pH and chemical character of adsorbate Soil Sci. Soc. Am. Proc. 32 222234.CrossRefGoogle Scholar
Benesi, H. A., (1956) Acidity of catalyst surfaces—1: Acid strength from colors of absorbed indicators J. Am. Chem. Soc. 78 54905494.CrossRefGoogle Scholar
Benesi, H. A., (1957) Acidity of catalyst surfaces—II: Amine titration using Hammett indicators J. Phys. Chem. 61 970973.CrossRefGoogle Scholar
Delvaux, L. and Laudelout, H., (1964) Catalyse hétérogène de la décomposition de l’ester diazoacetique en suspension aqueuse d’argile hydrogène J. Chim. Phys. 11531161.CrossRefGoogle Scholar
Drushel, H. V. and Sommers, A. L., (1966) Catalyst acidity distribution using visible and fluorescent indicators Anal. Chem. 38 17231731.CrossRefGoogle Scholar
Falk, M. and Giguere, P. A., (1957) Infrared spectrum of the H3O+ ion in aqueous solutions Can. J. Chem. 35 11951204.CrossRefGoogle Scholar
Fisher, R. and Ish-Shalom, M., (1965) Activation of Ramon bentonite with hydrochloric acid: Report 0273/MTK/ 961, Israel Ceramic and Silicate Institute, Haifa .Google Scholar
Hammett, L. P. and Deyrup, A. J., (1932) A series of simple basic indicators—I: The acidity functions of mixtures of sulfuric and perchloric acids with water J. Am. Chem. Soc. 54 27212739.CrossRefGoogle Scholar
Hirschler, A. E. and Schneider, A., (1961) Acid strength distribution studies of catalyst surfaces J. Chem. Engng. Data 6 313318.CrossRefGoogle Scholar
Kevorkian, V. and Steiner, R. O., (1963) Microcalorimetric studies of the distribution of surface energy in chemisorp-tion J. Phys. Chem. 67 545549.CrossRefGoogle Scholar
Kubokawa, Y., (1962) Determination of acidity of solid catalysts by ammonia chemisorption J. Phys. Chem. 67 769771.CrossRefGoogle Scholar
Lahav, N., (1972) Interaction between montmorillonite and benzidine in aqueous solutions—III: The color reaction in the air dry state Israel J. Chem. 10 925934.CrossRefGoogle Scholar
Mortland, M. M. and Raman, K. V., (1968) Surface acidity of smectites in relation to hydration, exchangeable cation and structure Clays and Clay Minerals 16 393398.CrossRefGoogle Scholar
Nutting, P. G., (1942) Adsorbent clays, their distribution, properties, production and uses 127221.Google Scholar
Petrov, A. A., (1963) Catalytic Isomerization of Hydrocarbons. Israel Program for Scientific Translations, Jerusalem .Google Scholar
Russell, J. D., Cruz, M. I. and White, J. L., (1968) The adsorption of 3-aminotriazole by montmorillonites J. Agric. Food Chem. 16 1 2124.Google Scholar
Solomon, D. H., Swift, J. D. and Murphy, A. J., (1971) The acidity of clay minerals in polymerization and related reactions J. Macromol. Sci. Chem. A5 3 587601.CrossRefGoogle Scholar
Solomon, D. H. and Murray, H. H., (1972) Acid-base interactions and the properties of kaolinite in non-aqueous media Clays and Clay Minerals 20 135141.CrossRefGoogle Scholar
Touillaux, R., Salvador, P., Vandermeersche, C. and Fripiat, J. J., (1968) Study of water layers adsorbed on Na- and Ca-montmorillonite by the pulsed n.m.r. technique Israel J. Chem. 6 337348.CrossRefGoogle Scholar
Vallet, M. and Pezerat, H., (1972) Formation et caracterisa-tion des complexes polystyrene-montmorillonite Bull. Groupe Franc. Argiles 24 8998.CrossRefGoogle Scholar
Walker, G. F., (1967) Catalytic decomposition of glycerol by layer silicates Clay Miner. 7 111112.CrossRefGoogle Scholar
Weissbrod, T., (1962) Bentonite deposits Makhtesh Ramon .Google Scholar
Yariv, S., Heller, L. and Sofer, Z., (1968) Sorption of aniline by montmorillonite Israel J. Chem. 6 741756.CrossRefGoogle Scholar
Yariv, S. and Heller, L., (1970) Sorption of cyclohexylamine by montmorillonites Israel J. Chem. 8 935945.CrossRefGoogle Scholar