Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-11T03:15:42.919Z Has data issue: false hasContentIssue false

Supergene Vermiculitization of A Magnesian Chlorite: Iron and Magnesium Removal Processes

Published online by Cambridge University Press:  02 April 2024

Dominique Proust
Affiliation:
Laboratoire de Pétrologie de la Surface, Université de Poitiers, 86022 Poitiers Cédex, France
Jean-Paul Eymery
Affiliation:
Laboratoire de Métallurgie Physique, Université de Poitiers, 86022 Poitiers Cédex, France
Daniel Beaufort
Affiliation:
Laboratoire de Pétrologie des Altérations Hydrothermales, Université de Poitiers, 86022 Poitiers Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

An X-ray powder diffraction study of a vermiculitized chlorite in an amphibole schist near Limoges, France, shows the following weathering sequence: chlorite → ordered interstratified chlorite/vermiculite → vermiculite. Mössbauer spectroscopy indicates that vermiculitization proceeded by the release of ferrous iron from the 2:1 mica layer of the chlorite. The ferric iron content of the vermiculite product is almost the same as that of the initial chlorite. Infrared spectroscopy and chemical microprobe analyses show that Mg was preferentially extracted from the hydroxide sheet of the chlorite, whereas the Si and Al contents progressively increased to the point of the formation of a pure dioctahedral aluminous vermiculite. The Si, Al, and Mg removal processes support currently accepted vermiculitization mechanisms, but the behavior of Fe is slightly different. In this weathering sequence, vermiculitization does not appear to have taken place by the oxidation of Fe2+, but rather, by the simultaneous leaching of Fe2+ and Mg.

Résumé

Résumé

L'analyse par diffraction de rayons X d'une chlorite magnésienne, dans une arène d'amphibolite, caractérise la séquence d'altération suivante: chlorite → interstratifié régulier chlorite/vermiculite → vermiculite. La spectroscopie Mössbauer indique que la vermiculitisation opère par libération du fer, à l’état ferreux, hors du feuillet 2:1 de la chlorite. La teneur en fer ferrique de la vermiculite est voisine de celle de la chlorite. Les analyses à la microsonde et en spectroscopie infrarouge montrent que Mg est préférentiellement libéré de la couche brucitique de la chlorite tandis que les teneurs en Si et Al augmentent avec l'altération jusqu’à la cristallisation d'une vermiculite dioctaédrique alumineuse. Les méchanismes de libération de Si, Al, et Mg sont semblables à ceux habituellement admis pour la vermiculitisation, mais le comportement du fer est différent. Dans cette séquence d'altération, la vermiculitisation ne procède pas par oxydation du fer, mais par départ simultané du fer ferreux et du magnésium.

Type
Research Article
Copyright
Copyright © 1986, The Clay Minerals Society

References

Adams, W. A., 1976 Experimental evidence on the origin of vermiculite in soils on lower Paleozoic sediments Soil Sci. Soc. Amer. J. 40 793795.CrossRefGoogle Scholar
Ahlrichs, J. L., 1968 Hydroxyl stretching frequencies of synthetic Ni-, Al-, and Mg-hydroxy interlayers in expanding clays Clays & Clay Minerals 16 6371.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W. and Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 91.Google Scholar
Bain, D. C., 1977 The weathering of chloritic minerals in some Scottish soils J. Soil Sci. 28 144164.CrossRefGoogle Scholar
Ballet, O., 1979 Fe2+ dans les silicates lamellaires. Etude magnétique et Mössbauer France Thèse 3e cycle, Grenoble.Google Scholar
Blaauw, C., Stroink, G., Leiper, W. and Zentilli, M., 1979 Crystal-field properties of Fe in brucite Mg(OH)2 Phys. Stat. Sol. B92 639643.CrossRefGoogle Scholar
Borggaard, O. K., Lindgreen, H. B. and Morup, S., 1982 Oxidation and reduction of structural iron in chlorite at 480°C Clays & Clay Mienrals 30 353363.CrossRefGoogle Scholar
Brindley, G. W. and Gillery, F. H., 1956 X-ray identification of chlorite species Amer. Mineral. 41 169186.Google Scholar
Brown, G., Brindley, G. W., Brindley, G. W. and Brown, G., 1980 X-ray diffraction procedures for clay minerals identification Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 339346.Google Scholar
Coey, J. M. D., 1980 Clay minerals and their transformations studied with nuclear techniques: the contribution of Mössbauer spectroscopy Atom. En. Rev. 18 73124.Google Scholar
Dubinska, E., 1982 Nickel-bearing minerals with chloritevermiculite intermediate structure from Szklary near Zabkowice Slaskie (Lower Silesia) Arch. Miner. 38 2748.Google Scholar
Ericsson, T. and Wäppling, R. (1976) On texture effects in M1 3/2-1/2 Mössbauer spectra: J. Phys. 37, C6-719-C6-723.Google Scholar
Farmer, V. C. and Farmer, V. C., 1974 The layer silicates Infrared Spectra of Minerals London Mineralogical Society 331363.CrossRefGoogle Scholar
Foster, M. D. (1962) Interpretation of the composition and a classification of the chlorites: U.S. Geol. Surv. Prof. Pap. 414–A, 33 pp.Google Scholar
Gilkes, R. J. and Little, I. P., 1972 Weathering of chlorite and some associations of trace elements in Permian phyllites in Southeast Queensland Geoderma 7 233247.CrossRefGoogle Scholar
Goodman, B. A., Bain, D. C., Mortland, M. M. and Farmer, V. C., 1979 Mössbauer spectra of chlorites and their decomposition products Proc. Int. Clay Conf, Oxford, 1978 Amsterdam Elsevier 6574.Google Scholar
Häggström, L., Wäppling, R. and Annersten, H., 1969 Mössbauer study of iron-rich biotites Chem. Phys. Letters 4 107108.CrossRefGoogle Scholar
Hayashi, H. and Oinuma, K., 1965 Relationship between infrared absorption spectra in the region 450–900 cm−1 and chemical composition of chlorite Amer. Mineral. 50 476483.Google Scholar
Hayashi, H. and Oinuma, K., 1967 Si-O absorption band near 1000 cm-1 and OH absorption bands of chlorite Amer. Mineral. 52 12061210.Google Scholar
Heller-Kallai, L. and Rozenson, I., 1981 The use of Mössbauer spectroscopy of iron in clay mineralogy Phys. Chem. Miner. 7 223238.CrossRefGoogle Scholar
Herbillon, A. J. and Makumbi, M. N., 1975 Weathering of chlorite in a soil derived from a chlorite schist under humid tropical conditions Geoderma 13 89104.CrossRefGoogle Scholar
Johnson, L. J., 1964 Chlorite-vermiculite intergrade as a weathering product of chlorite in a soil Amer. Mineral. 49 446572.Google Scholar
Lietzke, D. A. and Mortland, M. M., 1973 The dynamic character of a chloritized vermiculite soil clay Soil Sci. Soc. Amer. Proc. 37 651656.CrossRefGoogle Scholar
Makumbi, L. and Herbillon, A. J., 1972 Vermiculitisation experimentale d’une chlorite Bull. Gr. Fr. Argiles 24 153164.CrossRefGoogle Scholar
Nagly, D. L., 1978 Deformation induced texture in Mössbauer absorbers Appl. Phys. 17 269274.CrossRefGoogle Scholar
Post, J. L. and Janke, N. C., 1974 Properties of “swelling” chlorite in some Mesozoic formations of California Clays & Clay Minerals 22 6777.CrossRefGoogle Scholar
Post, J. L. and Plummer, C. C., 1972 The chlorite series of Flagstaff Hill area, California: a preliminary investigation Clays & Clay Minerals 20 271283.CrossRefGoogle Scholar
Proust, D., 1983 Mécanismes de l’altération supergène des roches basiques. Etude des arènes d’orthoamphibolite du Limousin et de glaucophanite de l’île de Groix (Morbihan) Poitiers Thèse Doct. Etat.Google Scholar
Rabenhorst, M. C., Fanning, D. S. and Foss, J. E., 1982 Regularly interstratified chlorite/vermiculite in soils over meta-igneous mafic rocks in Maryland Clays & Clay Minerals 30 156158.CrossRefGoogle Scholar
Reynolds, R. C., Brindley, G. W. and Brown, G., 1980 Interstratified clay minerals Crystal Structures of Clay Minerals and Their X-ray Identification London Mineralogical Society 287.Google Scholar
Ross, G. J., 1975 Experimental alteration of chlorites into vermiculites by chemical oxidation Nature 255 133134.CrossRefGoogle Scholar
Ross, G. J. and Kodama, H., 1974 Experimental transformation of a chlorite into a vermiculite Clays & Clay Minerals 22 205211.CrossRefGoogle Scholar
Ross, G. J. and Kodama, H., 1976 Experimental alteration of a chlorite into a regularly interstratified chlorite/vermieulite by chemical oxidation Clays & Clay Minerals 24 184190.CrossRefGoogle Scholar
Ross, G. J., Wang, C., Ozkan, A. I. and Rees, H. W., 1982 Weathering of chlorite and mica in a New Brunswick podzol developed on till derived from chlorite-mica schist Geoderma 27 255267.CrossRefGoogle Scholar
Sanz, J., Meyers, J., Vielvoye, L. and Stone, W. E. E., 1978 The location and content of iron in natural biotites and phlogopites: a comparison of several methods Clay Miner. 13 4552.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B. and Hossner, L. R., 1981 Transformation of chlorite to smectite through regularly interstratified intermediates Soil Sci. Soc. Amer. J. 45 650656.CrossRefGoogle Scholar
Serratosa, J. M. and Vinas, J. M., 1964 Infra-red investigation of the OH bands in chlorites Nature 202 199.CrossRefGoogle Scholar
Shirozu, H., Sudo, T. and Shimoda, S., 1978 Chlorite minerals Clays and Clay Minerals of Japan Amsterdam Elsevier 243264.CrossRefGoogle Scholar