Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-25T08:06:02.010Z Has data issue: false hasContentIssue false

A Study of the Removal of Copper Ions from Aqueous Solution Using Clinoptilolite from Serbia

Published online by Cambridge University Press:  01 January 2024

Djordje Stojakovic
Affiliation:
Innovation Centre of the Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
Jelena Milenkovic
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
Nina Daneu
Affiliation:
Jozef Stefan Institute, Jamova 39, 1000 Ljubljana, Slovenia
Nevenka Rajic*
Affiliation:
Faculty of Technology and Metallurgy, University of Belgrade, 11000 Belgrade, Serbia
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Toxic metal contamination of waste waters can be mitigated by metal adsorption to clay and zeolitic minerals, but in developing countries such environmental remediation can be cost prohibitive if these minerals are not readily available. Because of its abundance, low cost, and excellent selectivity for several toxic metal ions, clinoptilolite from the Zlatokop deposit in Serbia was investigated for its ability to remove copper ions from aqueous solutions and serve as an effective local resource for this purpose. The sorption capacity of the clinoptilolite at 298 K varied from 8.3 mg Cu g−1 (for C0 = 100 mg Cu dm−3) to 16.8 mg Cu g−1 (for C0 = 400 mg Cu dm−3). The sorption data were best described by the Freundlich isotherm and the sorption kinetics followed the pseudo-second-order model. Intra-particle diffusion of Cu2+ was present but it is not the rate-limiting step. The sorption of Cu2+ on the clinoptilolite occurred spontaneously, the free energy change decreasing with temperature. The sorption was endothermic and was accompanied by an increase in entropy. Dehydration of the Cu-loaded clinoptilolite at 540°C led to the formation of nanocrystalline Cu(I) oxide particles with an average size of ~2 nm, suggesting possible novel applications for the Cu-loaded clinoptilolite.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2011

References

Ambashta, R.D. and Sillanpaa, M., 2010 Water purification using magnetic assistance: A review Journal of Hazardous Materials 180 3849 10.1016/j.jhazmat.2010.04.105.CrossRefGoogle ScholarPubMed
Aravindhan, R. Raghava Rao, J. and Unni Nair, B., 2009 Preparation and characterization of activated carbon from marine macro-algal biomass Journal of Hazardous Materials 162 688694 10.1016/j.jhazmat.2008.05.083.CrossRefGoogle ScholarPubMed
Bozić, D. Stanković, V. Gorgievski, M. Bogdanović, G. and Kovacević, R., 2009 Adsorption of heavy metal ions by sawdust of deciduous trees Journal of Hazardous Materials 171 684–92 10.1016/j.jhazmat.2009.06.055.CrossRefGoogle ScholarPubMed
Bryantsev, V.S. Diallo, M.S. and Goddard, W.A., 2009 Computational study of copper(II) complexation and hydrolysis in aqueous solutions using mixed cluster/continuum models The Journal of Physical Chemistry 113 95599567 10.1021/jp904816d.CrossRefGoogle ScholarPubMed
Cerjan Stefanović, S. Zabukovec Logar, N. Margeta, K. Novak Tušar, N. Arčon, I. Maver, K. Kovač, J. and Kaučič, V., 2007 Structural investigation of Zn2+ sorption on clinoptilolite tuff from the Vranjska Banja deposit in Serbia Microporous and Mesoporous Materials 105 251259 10.1016/j.micromeso.2007.04.033.CrossRefGoogle Scholar
Cheung, C.W. Porter, J.F. and McKay, G., 2001 Sorption kinetic analysis for the removal of cadmium ions from effluents using bone char Water Research 35 605612 10.1016/S0043-1354(00)00306-7.CrossRefGoogle ScholarPubMed
Cheung, W.H. Szeto, Y.S. and McKay, G., 2007 Intraparticle diffusion processes during acid dye adsorption onto chitosan Bioresource Technolology 98 28972904 10.1016/j.biortech.2006.09.045.CrossRefGoogle ScholarPubMed
Cotton, F.A. Wilkinson, G. and Gaus, P.L., 1995 Basic Inorganic Chemistry New York John Wiley and Sons 580.Google Scholar
Çoruh, S. Turan, G. Akdemir, A. and Ergun, O.N., 2009 The influence of chemical conditioning on the removal of copper ions from aqueous solutions by using clinoptilolite Environmental Progress and Sustainable Energy 28 202211 10.1002/ep.10314.CrossRefGoogle Scholar
Erdem, E. Karapinar, N. and Donat, R., 2004 The removal of heavy metal cations by natural zeolites Journal of Colloid and Interface Science 280 309314 10.1016/j.jcis.2004.08.028.CrossRefGoogle ScholarPubMed
Georgievski, M. Bozic, D. Stankovic, V. and Bogdanovic, G., 2009 Copper electrowinning from acid mine drainage: A case study from the closed mine Cerovo Journal of Hazardous Materials 170 716721 10.1016/j.jhazmat.2009.04.135.CrossRefGoogle Scholar
Greenwood, N.N. and Earnshow, A., 1984 Chemistry of the Elements .Google Scholar
Gutierrez, M. Escudey, M. Escrig, J. Denardin, J.C. Altbir, D. Fabris, J.D. Cavalcante, L.C.D. and Garcia-Gonzalez, M.T., 2010 Preparation and characterization of magnetic composites based on a natural zeolite Clays and Clay Minerals 58 589595 10.1346/CCMN.2010.0580501.CrossRefGoogle Scholar
Ho, Y., 2006 Review of second-order models for adsorption systems Journal of Hazardous Materials B136 681689 10.1016/j.jhazmat.2005.12.043.CrossRefGoogle Scholar
Ho, Y.S. Porter, J.F. and McKay, G., 2002 Equilibrium isotherm studies for the sorption of divalent metal ions onto peat: Copper, nickel and lead single component systems Water, Air and Soil Pollution 141 133 10.1023/A:1021304828010.CrossRefGoogle Scholar
Kinniburgh, D.G., 1986 General purpose adsorption isotherms Environmental Science & Technology 20 895904 10.1021/es00151a008.CrossRefGoogle ScholarPubMed
Kocaoba, S. Orhan, Y. and Akyüz, T., 2007 Kinetics and equilibrium studies of heavy metal ions removal by use of natural zeolite Desalination 214 110 10.1016/j.desal.2006.09.023.CrossRefGoogle Scholar
Korkuna, O. Leboda, R. Skubiszewska-Zieba, J. Vrublevs’ka, T. Gun’ko, V.M. and Ryczkowski, J., 2006 Structural and physicochemical properties of natural zeolites: clinoptilolite and mordenite Microporous and Mesoporous Materials 87 243254 10.1016/j.micromeso.2005.08.002.CrossRefGoogle Scholar
Kuo, C.-H. and Huang, M.H., 2010 Morphologically controlled synthesis of Cu2O nanocrystals and their properties Nano Today 5 106116 10.1016/j.nantod.2010.02.001.CrossRefGoogle Scholar
Panayotova, M I, 2001 Kinetics and thermodynamics of copper ions removal from wastewater by use of zeolite Waste Management 21 671676 10.1016/S0956-053X(00)00115-X.CrossRefGoogle ScholarPubMed
Pedit, J.A. and Miller, C.T., 1994 Heterogeneous sorption processes in subsurface systems 1 Model formulations and applications. Environmental Science & Technology 28 20942104.Google ScholarPubMed
Powell, K.J. Brown, P.L. Byrne, R.H. Gajda, T. Hefter, G. Sjöberg, S. and Wanner, H., 2007 Chemical speciation of environmentally significant metals with inorganic ligands Part 2: The Cu2+-OH, Cl CO32−, SO42−, and PO43− systems (IUPAC Technical Report) Pure and Applied Chemistry 79 895950 10.1351/pac200779050895.CrossRefGoogle Scholar
Rajic, N. Stojakovic, D.j. Jevtic, S. Zabukovec Logar, N. Mazaj, M. and Kaucic, V., 2010a Removal of aqueous manganese using the natural zeolitic tuff from the Vranjska Banja deposit in Serbia Journal of Hazardous Materials 172 1450–7 10.1016/j.jhazmat.2009.08.011.Google Scholar
Rajic, N. Stojakovic, D.j. Jovanovic, M. Zabukovec Logar, N. Mazaj, M. and Kaucic, V., 2010b Removal of nickel(II) ions from aqueous solutions using the natural clinoptilolite and preparation of nano-NiO on the exhausted clinoptilolite Applied Surface Science 257 15241532 10.1016/j.apsusc.2010.08.090.CrossRefGoogle Scholar
Ritchie, A.G., 1977 Alternative to the Elovich equation for the kinetics of adsorption of gases on solids Journal of the Chemical Society Faraday Transactions I 73 16501653 10.1039/f19777301650.CrossRefGoogle Scholar
Rodríguez Iznaga, I. Petranovskii, V. Rodríguez Fuentes, G. Mendoza, C. and Beítez Aguilar, A., 2007 Exchange and reduction of Cu2+ ions in clinoptilolite Journal of Colloid and Interface Science 316 877886 10.1016/j.jcis.2007.06.021.CrossRefGoogle Scholar
Skorik, Y.u. Osintseva, E. Podberezskaya, N. Virovets, A. Neudachina, L. and Vshivkov, A., 2005 Copper(II) complexes with N-(2-carboxyethyl)anthranilic acid H2CEAnt Russian Chemical Bulletin 54 15631568 10.1007/s11172-006-0004-x.CrossRefGoogle Scholar
Sprynskyy, M. Buszewski, B. Terzyk, A.P. and Namiesnik, J., 2006 Study of the selection mechanism of heavy metal (Pb2+, Cu2+, Ni2+, and Cd2+) adsorption on clinoptilolite Journal of Colloid and Interface Science 304 2128 10.1016/j.jcis.2006.07.068.CrossRefGoogle ScholarPubMed
Stojakovic, D.j. Hrenovic, J. Mazaj, M. and Rajic, N., 2011 On the zinc sorption by the Serbian natural clinoptilolite and the disinfecting ability and phosphate affinity of the exhausted sorbent Journal of Hazardous Materials 185 408415 10.1016/j.jhazmat.2010.09.048.CrossRefGoogle ScholarPubMed
Svilović, S. Rušić, D. and Stipišić, R., 2009 Modeling batch kinetics of copper ions sorption using synthetic zeolite NaX Journal of Hazardous Materials 170 941947 10.1016/j.jhazmat.2009.05.063.CrossRefGoogle ScholarPubMed
Vijayaraghavan, K. Padmesh, T.V.N. Palanivelu, K. and Velan, M., 2006 Biosorption of nickel(II) ions onto Sargassum wightii: Application of two-parameter and three-parameter isotherm models Journal of Hazardous Materials B133 304308 10.1016/j.jhazmat.2005.10.016.CrossRefGoogle Scholar
Vijayaraghavan, K. and Yun, Y., 2008 Bacterial biosorbents and biosorption Biotechnology Advances 26 266291 10.1016/j.biotechadv.2008.02.002.CrossRefGoogle ScholarPubMed
Wang, S. and Peng, Y., 2010 Natural zeolites as effective adsorbents in water and wastewater treatment Chemical Engineering Journal 156 1124 10.1016/j.cej.2009.10.029.CrossRefGoogle Scholar
Weber, WJ Jr. and Morris, J.C., 1963 Kinetics of adsorption on carbon from solution Journal of the Sanitary Engineering Division: proceedings of the American Society of Civil Engineers 89 3160.CrossRefGoogle Scholar
Weber, WJ Jr. McGinley, P.M. and Katz, L.E., 1992 A distributed reactivity model for sorption by soils and sediments 1. Conceptual basis and equilibrium assessments. Environmental Science & Technology 26 19551962.Google Scholar
Whitten, K.W. Davis, R.E. Peck, M.L. and Stanley, G.G., 2007 Chemistry Australia Thomson Brooks/Cole 769773.Google Scholar