Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-26T20:38:58.107Z Has data issue: false hasContentIssue false

A Study of the Adsorption of Ni(II) and Cu(II) by Clay Minerals

Published online by Cambridge University Press:  01 July 2024

M. H. Koppelman*
Affiliation:
Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
J. G. Dillard
Affiliation:
Department of Chemistry, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, U.S.A.
*
*Present address: Research Department, Georgia Kaolin Co., Elizabeth, NJ 07207, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The adsorption of Ni(II) and Cu(II) on to the clay minerMs kaolinite, chlorite, and illite has been investigated. The quantity of Ni(II) at pH 6 and Cu(II) at pH 5 adsorbed has been found to vary in the manner chlorite > illite > kaolinite. Examination of the mode of bonding of the metal ions to the clay minerals using X-ray photoelectron spectroscopy (XPS) has been carried out. Comparison of the binding energies for metal ions in octahedral sites in selected minerals (reference minerals) and in simple nickel and copper containing compounds with values for Ni(II) and Cu(II) adsorbed on chlorite indicate that nickel(II) is probably bound as the aquo ion while copper(II) may be adsorbed as Cu(OH)+.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 1977

References

Alvarez, R., Fadley, C. S., Silva, J. A. and Uehara, G. (1976) A study of silicate adsorption on gibbsite [Al(OH)] by X-ray photoelectron spectroscopy (XPS): Soil Sci. Soc. Am. J. 40, 615617.CrossRefGoogle Scholar
Anderson, P. R. and Swartz, W. E. (1974) X-ray photoelectron spectroscopy of some aluminosilicates: Inorg. Chem. 13, 22932294.CrossRefGoogle Scholar
Clementz, D. M., Mortland, M. M. and Pinnavaia, T. J. (1974) Properties of reduced charge montmorillonites: hydrated Cu(II) ions as a spectroscopic probe: Clays and Clay Minerals 22, 4957.CrossRefGoogle Scholar
Clementz, D. M., Pinnavaia, T. J. and Mortland, M. M. (1973) Stereochemistry of hydrated copper(II) ions on the interlamellar surfaces of layer silicates. An electron spin resonance study: J. Phys. Chem. 77, 196200.CrossRefGoogle Scholar
Counts, M. E., Jen, J. S. C. and Wightman, J. P. (1973) An electron spectroscopy for chemical analysis study of lead adsorbed on montmorillonite: J. Phys. Chem. 77, 19241926.CrossRefGoogle Scholar
Dugger, D. L., Stanton, J. H., Irby, B. N., McConnell, B. L., Cummings, W. W. and Maatman, R. N. (1964) The exchange of twenty metal ions with the weakly acidic silanol group of silica gel: J. Phys. Chem. 64, 757760.CrossRefGoogle Scholar
Farrah, H. and Pickering, W. F. (1976a) The sorption of copper by clays. I Kaolinite: Australian J. Chem. 29, 11671176.CrossRefGoogle Scholar
Farrah, H. and Pickering, W. F. (1976b) The sorption of copper species by clays. II Illite and montmorillonite: Australian J. Chem. 29, 11771184.CrossRefGoogle Scholar
Frost, D. C., Ishitani, A. and McDowell, C. A. (1972) X-ray photoelectron spectroscopy for copper compounds: Mol. Phys. 24, 861877.CrossRefGoogle Scholar
Hathaway, B. J. and Lewis, C. E. (1969) Electronic properties of transition-metal complex ions adsorbed on silica gel. Part I. Nickel(II) complexes: J. Chem. Soc. (A), 11761182.Google Scholar
Huntress, W. T. and Wilson, L. (1972) An ESCA study of lunar and terrestrial minerals: Earth Planet. Sci. Lett. 15, 5964.CrossRefGoogle Scholar
Kim, K. S. and Davis, R. E. (1972–1973) J. Electron. Spectrosc. 1, 251.CrossRefGoogle Scholar
Koppelman, M. H. and Dillard, J. G. (1975) An ESCA study of sorbed metal ions on clay minerals: A.C.S. Symp. Series 18, 186201.Google Scholar
Koppelman, M. H., Emerson, A. B. and Dillard, J. G. (1976) Unpublished XPS data for various Cr3+ and Co3+ species adsorbed on chlorite and kaolinite.Google Scholar
Lindsay, J. R., Rose, H. J., Swartz, W. E., Watts, P. H. and Rayburn, K. A. (1973) X-ray photoelectron spectra of aluminum oxides: structural effects on the “chemical shift”: Appl. Spectrosc. 27, 15.CrossRefGoogle Scholar
Matienzo, L. J., Yin, L. I., Grim, S. O. and Swartz, W. E. (1973) X-ray photoelectron spectroscopy of nickel compounds: Inorg. Chem. 12, 27622769.CrossRefGoogle Scholar
McBride, M. B. (1976a) Exchange and hydration properties of Cu2+ on mixed-ion Na+–Cu2+ smectites: Soil Sci. Soc. Am. J. 40, 452456.CrossRefGoogle Scholar
McBride, M. B. (1976b) Origin and position of exchange sites in kaolinite: an ESR study: Clays and Clay Minerals 24, 8892.CrossRefGoogle Scholar
McBride, M. B., Pinnavaia, T. J. and Mortland, M. M. (1975) Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces: J. Phys. Chem. 79, 24302435.CrossRefGoogle Scholar
McIntyre, N. S. and Cook, M. G., (1975) Anal. Chem., 47, 2208.CrossRefGoogle Scholar
O'Connor, T. P. and Kester, D. R. (1975) Adsorption of copper and cobalt from fresh and marine systems: Geochim. Cosmochim. Acta 39, 15311543.CrossRefGoogle Scholar
Rosencwaig, A., Wertheim, G. K. and Guggenheim, H. J. (1971) Origins of satellites on inner-shell photoelectron spectra: Phys. Rev. Lett. 27, 479481.CrossRefGoogle Scholar
Swartzen-Allen, S. L. and Matijevic, E. (1974) Surface and colloid chemistry of clays: Chem. Rev. 74, 385400.CrossRefGoogle Scholar
Tewari, P. H. and Lee, W. (1975) Adsorption of Co(II) at the oxide–water interface: J. Colloid Interface Sci. 52, 7788.CrossRefGoogle Scholar
Tolman, C. A., Riggs, W. M., Linn, W. J., King, C. M. and Wendt, R. C. (1973) Electron spectroscopy for chemical analysis of nickel compounds: Inorg. Chem. 12, 27702778.CrossRefGoogle Scholar
Wallbank, B., Johnson, C. E. and Main, I. G. (1973) Multielectron satellites in core electron photoemission from 3d° ions in solids: J. Phys. C, 6, L493L495.CrossRefGoogle Scholar