Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T07:25:27.186Z Has data issue: false hasContentIssue false

Study of Some Physicochemical Properties of Pillared Montmorillonites: Acid-Base Potentiometric Titrations and Electrophoretic Measurements

Published online by Cambridge University Press:  02 April 2024

Marcelo J. Avena
Affiliation:
Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Dpto. de Fisico Química, Facultad de Ciencias Químicas, Universidad National de Córdoba, Suc. 16, C. C. 61, 5016 Córdoba, Argentina
Raúl Cabrol
Affiliation:
Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Dpto. de Fisico Química, Facultad de Ciencias Químicas, Universidad National de Córdoba, Suc. 16, C. C. 61, 5016 Córdoba, Argentina
Carlos P. De Pauli
Affiliation:
Instituto de Investigaciones en Fisicoquímica de Córdoba (INFIQC), Dpto. de Fisico Química, Facultad de Ciencias Químicas, Universidad National de Córdoba, Suc. 16, C. C. 61, 5016 Córdoba, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The surface charges and the zeta potential of a Na-montmorillonite (Na-mont) and two pillared montmorillonite (MP1 and MP2) samples with different aluminum contents were determined by Potentiometric titrations and electrophoretic measurements. At pH >9 the two pillared montmorillonite samples showed zeta potentials similar to those of Na-mont, but at pH <8, the negative zeta potential shifted to lower negative values as the aluminum content increased. Sample MP1, which had a greater Al content, showed an isoelectric point (IEP) of 5.0–5.5. Titration curves obtained by acid-base Potentiometrie titration for sample MP1 showed a well-defined cross-over point at pH = 5.0, whereas this point was not observed for sample MP2 in the pH range studied. The results indicate, in principle, that both techniques can be used to characterize surface charges in this type of material. An attempt was also made to relate the data obtained from electrophoretic mobility and Potentiometrie titrations.

Type
Research Article
Copyright
Copyright © 1990, The Clay Minerals Society

References

Barnhisel, R. I., Dixon, J. B. and Weed, S. B., 1977 Chlorites and hydroxy interlayered vermiculite and smectite Minerals in Soil Environments Madison, Wisconsin Soil Science Society of America 331356.Google Scholar
Black, C. A., 1965 Methods of Soil Analysis Madison, Wisconsin Amer. Soc. Agronomy.CrossRefGoogle Scholar
Breeuwsma, A., 1973 Adsorption of ions on hematite (α-Fe2O3). A colloid-chemical study Mededelingen Land-bouwhogescholl Wageningen, Netherland 73–1 1123.Google Scholar
Carrado, K. A., Kostapapas, A., Suib, S. L. and Coughlin, R. W., 1986 Physical and chemical stabilities of pillared clays containing transition metal ions Solid State Ionics 22 117125.CrossRefGoogle Scholar
Carter, D. L., Heilman, M. D. and González, C. L., 1965 Ethylene glycol monoethyl ether for determining surface area of silicate minerals Soil Sci. 100 356360.CrossRefGoogle Scholar
Corma, A., Herrero, E. R., Melo, F. V. and Fornés, V., 1988 Craqueo catalitico de gasoil sobre bentonitas pilareadas y sobre combinaciones bentonita-zeolita y desaluminizada XI. Simposio Iberoamericano de Catálisis. Méjico Guanajuato 983987.Google Scholar
Cuisset, O., 1980 Propiétés électrocinétiques des particules argileuses. Aplication de la méthode électrophorétique aux problèmes d’environnement et d’identification des sols Rapport de Recherche LPC No. 96 2171.Google Scholar
Delgado, A., González-Caballero, F. and Bruque, J. M., 1986 On the zeta potential and surface charge density of mont-morillonite in aqueous electrolyte solutions J. Colloid. Interface Sci. 113 203211.CrossRefGoogle Scholar
Delgado, A., González-Caballero, F., Salcedo, J. and Cabrerizo, M. A., 1988 A study of the electrophoretic properties of montmorillonite particles in aqueous electrolyte solutions Materials Chem. Phys. 19 327340.CrossRefGoogle Scholar
Harsh, J. B. and Doner, H.E., 1985 The nature and stability of aluminum hydroxide precipitated on Wyoming montmorillonite Geoderma 36 4556.CrossRefGoogle Scholar
Hendershot, W. H. and Laukulich, M. L., 1983 Effect of sesquioxide coatings on surface charge of standard mineral and soil samples Soil Sci. Soc. Amer. J. 47 12521260.CrossRefGoogle Scholar
Hesleitner, P., Babić, D., Kallay, N. and Matijević, E., 1987 Adsorption at solid/solution interfaces 3. Surface charge and potential of colloidal hematite Langmuir 3 815820.CrossRefGoogle Scholar
Inoue, H., Haga, S., Iwakura, C. and Yoneyama, N., 1988 Effects of the solution pH on the electrochemical behavior of Ru(bpy)3 2+ and Fe(CN)6 3− ions at a clay-modified electrode J. Electroanal. Chem. 249 133141.CrossRefGoogle Scholar
Keren, R., Gast, R. G. and Barnhisel, R. I., 1977 Ion exchange reactions in nondried chambers montmorillonite hydroxy-aluminum complexes Soil. Sci. Soc. Amer. J. 41 3438.CrossRefGoogle Scholar
Matijević, E., Bell, A., Brace, R. and McFadyen, P., 1973 Formation and surface characteristics of hydrous metal oxide sols J. Electrochem. Soc. 120 893899.CrossRefGoogle Scholar
Matsumoto, M., Shindda, S., Takahashi, M. and Saito, Y., 1984 Carbon-13 nuclear magnetic relaxation studies of bencene molecules adsorbed on the pillar interlayered montmorillonite Bull. Chem. Soc. Jpn. 57 17951800.CrossRefGoogle Scholar
O’Brien, R. W. and White, L. R., 1978 Electrophoretic mobility of a spherical colloidal particle J. Chem. Soc. Faraday Trans. II 74 16071626.CrossRefGoogle Scholar
Occelli, M. L., 1986 New routes to the preparation of pillared montmorillonite catalysts J. Mol. Catal. 35 377389.CrossRefGoogle Scholar
Occelli, M. L. and Finseth, D. H., 1986 Preparation and characterization of pillared hectorite catalysts J. Catal. 99 316326.CrossRefGoogle Scholar
Occelli, M. L., Innes, R. A., Hwu, F. S. S. and Hightower, J. W., 1985 Sorption and catalysis on sodium-mont-morillonite interlayered with aluminum oxide clusters Appl. Catal. 14 6982.CrossRefGoogle Scholar
Parker, J. C., Zelazny, L. W., Sampath, S. and Harris, W. G., 1979 A critical evaluation of the extension of zero point of charge (ZPC) theory to soil systems Soil. Sci. Soc. Amer. J. 43 668674.CrossRefGoogle Scholar
Peinemann, N., Ferreiro, E. A. and Helmy, A. K., 1972 Estudio mineralógico de una montmorillonita de Cerro Bandera (Provincia de Neuquén, República Argentina) Rev. de la Asoc. Geol. Argent. 27 399405.Google Scholar
Pinnavaia, T. J., 1983 Intercalated clay catalysts Science 220 365371.CrossRefGoogle ScholarPubMed
Pinnavaia, T. J., Tzou, M.-S. and Landau, S.D., 1985 New chromia pillared clay catalysts J. Amer. Chem. Soc. 107 47834785.CrossRefGoogle Scholar
Rudzinski, W. E. and Bard, A. J., 1986 Clay modified electrodes. Part VI. Aluminum and silicon pillared clay-modified electrodes J. Electroanal. Chem. 199 323340.CrossRefGoogle Scholar
Sadek, N., Helmy, A. K., Sabet, V. M. and Tadros, Th F, 1970 Adsorption of potential-determining ions at the aluminum oxide-aqueous interface and the point of zero charge J. Electroanal. Chem. 27 257266.CrossRefGoogle Scholar
Sterte, J., 1986 Synthesis and properties of titanium oxide cross-linked montmorillonite Clays & Clay Minerals 34 658664.CrossRefGoogle Scholar
Suhr, M. H. and Ingannells, C. O., 1966 Solution technique for analysis of silicates Anal. Chem. 38 730734.CrossRefGoogle Scholar
Tasaki, K., 1987 Transformation of Al-interlayered montmorillonite upon aging Can. Mineral. 25 347352.Google Scholar
Tichit, A., Fajula, F., Figueras, F., Aucourant, B., Mascherpa, G., Gueguen, C. and Bousquet, J., 1988 Sintering of montmorillonites pillared by hydroxy-aluminum species Clays & Clay Minerals 36 369375.CrossRefGoogle Scholar
Tokarz, M. and Shabtai, J., 1985 Cross-linked smectites. IV. Preparation and properties of hydroxyaluminum-pillared Ce- and La-montmorillonites and fluorinated NH4 +-montmorillonites Clays & Clay Minerals. 33 8998.CrossRefGoogle Scholar
Urabe, K., Sakurai, H. and Izumi, Y., 1986 Pillared synthetic saponite as an efficient alkylation catalyst J. Chem. Soc. Chem. Commun. 10741076.CrossRefGoogle Scholar