Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-24T02:21:37.476Z Has data issue: false hasContentIssue false

Structural Model for Benzidine-Vermiculite

Published online by Cambridge University Press:  02 April 2024

P. G. Slade
Affiliation:
CSIRO Division of Soils, Glen Osmond, South Australia 5064, Australia
M. Raupach
Affiliation:
CSIRO Division of Soils, Glen Osmond, South Australia 5064, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A combination of X-ray diffraction, infrared, and chemical data has established that the ion exchange of vermiculite with singly charged benzidine cations in an aqueous solution at pH 1.6 results in a black, highly ordered benzidine-vermiculite intercalate. The intercalate has a basal spacing of 19.25 Å and a primitive unit cell with “a” and “b” edges parallel and equal to those of vermiculite. The number of benzidine molecules per cell is equal to its electric charge. In this structure the benzidine molecules are steeply inclined to the silicate surfaces and close-packed within domains. The domains contain alternating rows of benzidine cations; from row to row the planes are either approximately parallel or perpendicular to the (120) plane, but along any one row the planes of the aromatic rings are parallel to each other. Hydrogen bonding operates between amine nitrogens and surface oxygens.

Резюме

Резюме

Комбинация данных по рентгеновской порошковой дифракции, инфракрасном и химическом анализах показала, что результатом обмена ионов вермикулита с однозаряженными бензидиновыми катионами в водных растворах при рН = 1,6 является черный, сильно упорядоченный, прослоеннчй бензидино-вермикулит. Этот продукт миеет промежуток 19,25 Å и примитивную элементарную ячейку с краями “а” и “Ь,” параллельными и равными по величине краям в вермикулите. Число молекул бензидина в ячейке равно его электрическому заряду. В этой структуре молекулы бензидина круто наклонены к силикатовым поверхностям и плотно упакованы внутои областей. Области содержат переменные ряды бензидиновых катионов; от ряда до ряда плоскости или приблизительно параллельны или перпендикулярны к плоскости (120), но вдоль любого ряда плоскости ароматических колец параллельны между собой. Водородная связь действует между аминовыми атомами азота и поверхностными атомами кислорода. [Е.С.]

Resümee

Resümee

Eine Kombination von Röntgendiffraktion-, Infrarot-, und chemischen Daten hat gezeigt, daß der Ionenaustausch von Vermiculit mit einfach geladenen Benzidinkationen in einer wässrigen Lösung bei pH 1,6 zu einer schwarzen, gut geordneten Benzidin-Vermiculit Wechsellagerung führt. Die Wechsellagerung hat einen Basisabstand von 19,25 Å und eine primitive Elementarzelle mit “a” und “b” Kanten parallel und gleich denen von Vermiculit. Die Zahl der Benzidinmoleküle pro Elementarzelle entspricht der elektrischen Ladung. In dieser Struktur sind die Benzidinmoleküle steil zu den Silikatoberflächen und in dichtbesetzten Domänen angeordnet. Diese Domänen enthalten abwechselnde Reihen von Benzidinkationen; von Reihe zu Reihe sind die Benzidinebenen entweder nahezu parallel oder senkrecht zur (120)-Fläche angeordnet, aber innerhalb einer Reihe sind die Ebenen der aromatischen Ringe zueinander parallel. Wasserstoffbrückenbindung besteht zwischen Aminstickstoffen und den Oberflächensauerstoffen. [U.W.]

Résumé

Résumé

La combinaison de données de diffraction aux rayons-X et d'analyse infrarouge et chimique a établi que l’échange des ions de vermiculite avec les cations de benzidine simplement chargés dans une solution aqueuse à un pH de 1,6 resulte en un intercalate noir benzidine-vermiculite très ordonné. L'intercalate a un espacement de base de 19,25 Å et une maille primitive ayant les côtés “a” et “b” parallèles et égaux à ceux de la vermiculite. Le nombre de molécules de benzidine par maille est égal à sa charge électrique. Dans cette structure, les molécules de benzidine sont fortement inclinées vers les surfaces silicates et sont arrangées de manière très compacte endéans les domaines. Les domaines contiennent des rangées alternantes de cations benzidine; d'une rangée à l'autre, les surfaces planes sont soit approximativement parallèles, soit perpendiculaires à la surface plane (120), mais le long d'une seule rangée, les surfaces planes contenant les anneaux aromatiques sont parallèles l'une à l'autre. La liaison d'hydrogène se passe entre les nitrogènes aminés et les surfaces oxygènes. [D.J.]

Type
Research Article
Copyright
Copyright © 1982, The Clay Minerals Society

References

Burnham, C. W., 1963 GNABS, program for Computing transmission factors for crystals of essentially arbitrary shape Washington, D.C. Geophysical Laboratory, Carnegie Institution.Google Scholar
Busing, W. R., Martin, K. O., and Levy, H. A. (1962) ORFLS, A fortran crystallographic least-squares program: Oak Ridge Natl. Lab. Tech. Mem. 305, Oak Ridge National Laboratory, Tennessee, 75 pp.Google Scholar
Chung, H. K., Hoon, S. K. and Hyun, S. S., 1972 The crystal structure of benzidine dihydrochloride J. Korean Chem. Soc. 16 1824.Google Scholar
Freeman, H. C., Guss, J. M., Nockolds, C. E., Page, R. and Webster, A., 1970 Operation of a computer-controlled equi-inclination x-ray diffractometer Acta Crystallogr A26 149152.CrossRefGoogle Scholar
Furukawa, T. and Brindley, G. W., 1973 Adsorption and oxidation of benzidine and aniline by montmorillonite and hectorite Clays & Clay Minerals 21 179288.CrossRefGoogle Scholar
Greene-Kelly, R., 1955 Sorption of aromatic organic Compounds by montmorillonite Pt. 1—orientation studies Trans. Faraday Soc. 51 412424.CrossRefGoogle Scholar
Hendricks, S. B., 1941 Base exchange of the clay mineral montmorillonite for organic cations and its dependence upon adsorption due to van der Waals forces J. Phys. Chem. 45 6581.CrossRefGoogle Scholar
Hendricks, S. B. and Alexander, L. T., 1940 A qualitative color test for the montmorillonite type of clay minerals Amer. Soc. Agron. J. 32 455458.CrossRefGoogle Scholar
Mathieson, A. Mc. L., 1958 Mg-vermiculite: A refinement and reexamination of the crystal structure of the 14.36 Å phase Amer. Mineral. 43 216227.Google Scholar
McBride, M. B., 1979 Reactivity of adsorbed and structural iron in hectorite as indicated by oxidation of benzidine Clays & Clay Minerals 27 224230.CrossRefGoogle Scholar
Norrish, K. and Serratosa, J. M., 1973 Factors in the weathering of mica to vermiculite in Proc. Int. Clay Conf., Madrid, 1972 Madrid Div. Ciencias C.S.I.C 417432.Google Scholar
Raupach, M., Emerson, W. W. and Slade, P. G., 1979 The arrangement of paraquat bound by vermiculite and mont-morillonite J. Colloid Interface Sci. 69 398408.CrossRefGoogle Scholar
Schuster, P., Zundel, G. and Sandorfy, C., 1976 The Hydrogen Bond, Recent Developments in Theory and Experiments, II. Structure and Spectroscopy Amsterdam Elsevier North-Holland 653682.Google Scholar
Slade, P. G., Raupach, M. and Emerson, W. W., 1978 The ordering of cetylpyridinium bromide on vermiculite Clays & Clay Minerals 26 125134.CrossRefGoogle Scholar
Solomon, D. H., Loft, B. C. and Swift, J. D., 1968 Reactions catalysed by minerals IV. The mechanism of the benzidine blue reaction on silicate minerals Clay Miner. 7 389397.CrossRefGoogle Scholar
Tennakoon, D. T. B., Thomas, J. M. and Tricker, M. S., 1974 Surface and intercalate chemistry of layered sili-cates. Part II. An iron-57 Mössbauerbauer study of the role of lattice-substituted iron in the benzidine blue reaction of montmorillonite J. Chem. Soc. Dalton Trans. 20 22112215.CrossRefGoogle Scholar
Vedeneeva, N. E., 1950 The mechanism of the colored reaction of benzidine with montmorillonite Kolloid. Zhur. 12 1724.Google Scholar
Zierath, D. L., Hassett, J. J. and Bauwart, W.L., 1980 Sorption of benzidine by sediments and soils Soil Science 129 277281.CrossRefGoogle Scholar