Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-23T01:13:52.391Z Has data issue: false hasContentIssue false

Structural characterization of (Cu2+,Na+)- and (Cu2+, NH4+\$\end{document})-exchanged bentonites upon thermal treatment

Published online by Cambridge University Press:  01 January 2024

Torsten Seiffarth*
Affiliation:
Bauhaus University Weimar, Building Chemistry, Coudraystr. 13C, D-99423 Weimar, Germany
Christian Kaps
Affiliation:
Bauhaus University Weimar, Building Chemistry, Coudraystr. 13C, D-99423 Weimar, Germany
*
* E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Bentonites are excellent materials for sequestering various metal cations because of the cation fixation ability of the constituent montmorillonite layers, but sometimes, such as in the case of Cu2+, the exact location of cation fixation with respect to the clay layers is difficult to determine. Na-montmorillonite was prepared from the <2 µm fraction of the bentonite Calcigel (from Bavaria, Germany) and exchanged by Cu2+ and Na+ or by Cu2+ and NH4+\$\end{document} cations. The resulting materials (bi-ionic Cu-Na and Cu-NH4 samples, respectively, as well as homo-ionic forms with Cu2+, Na+ and NH4+\$\end{document}) were heated for 24 h at temperatures of 300 and 450°C and the structural evolution characterized using X-ray diffraction (XRD) analysis, Fourier Transform Infrared (FTIR) spectroscopy, and differential scanning calorimetry (DSC) analysis.

The XRD patterns showed that the Cu sample and the Cu-Na sample have basal spacings of 12.5 Å. Upon heating at 300 and 450°C, the layers collapsed to 9.5 Å. In contrast, the d001 value in the NH4 sample and Cu-NH4 sample decreased to 10.0 Å and 10.2 Å, respectively, during the heat treatment. The Cu2+ ions migrated irreversibly into the montmorillonite structure.

For the NH4 and the Cu-NH4 samples, DSC analyses show that NH3 evolved at between 300 and 400°C though the octahedral sheet was not altered substantially by the H+ generated. Infrared spectra show that the bands of the Si-O and OH vibrations of all samples were changed upon heating due to the movement of the dehydrated cations into the hexagonal holes of the tetrahedral sheet. Apparently no Cu2+ was trapped in the octahedral sheet. In the case of the Cu-NH4 form, both Cu2+ fixation and de-ammonization occurred during the heat treatment. Other than maintaining the basal spacing, no effect of the presence of NH4+\$\end{document} on the Cu2+ fixation could be found for the montmorillonite studied.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2009

References

Barrer, R.M., 1949 Preparation of some crystalline hydrogen zeolites Nature (London) 164 112113 10.1038/164112a0.CrossRefGoogle Scholar
Chitnis, S.R. and Sharma, M.M., 1997 Industrial applications of acid-treated clays as catalysts Reactive & Functional Polymers 32 93115 10.1016/S1381-5148(96)00074-0.CrossRefGoogle Scholar
Emmerich, K., 2000 Die geotechnische Bedeutung des Dehydroxylierungsverhaltens quellfähiger Tonminerale Switzerland ETH Zurich 143 pp.Google Scholar
Farmer, V.C. and Farmer, V.C., 1974 The layer silicates The Infrared Spectra of Minerals London Mineralogical Society 331363 10.1180/mono-4.15.CrossRefGoogle Scholar
Friedrich, F., 2004 Spectroscopic investigations of delaminated and intercalated phyllosilicates Germany Universität Karlsruhe 146 pp.Google Scholar
Greene-Kelly, R., 1952 Irreversible dehydration in montmorillonite Clay Minerals Bulletin 1 221227 10.1180/claymin.1952.001.7.06.CrossRefGoogle Scholar
He, H.P. Guo, J.G. Xie, X.D. and Peng, J.L., 2001 Location and migration of cations in Cu2+-adsorbed montmorillonite Environment International 26 347352 10.1016/S0160-4120(01)00011-3.CrossRefGoogle ScholarPubMed
Heller-Kallai, L. and Mosser, C., 1995 Migration of Cu ions in Cu montmorillonite heated with and without alkali halides Clays and Clay Minerals 43 738743 10.1346/CCMN.1995.0430610.CrossRefGoogle Scholar
Hofmann, U. and Kiemen, R., 1950 Verlust der Austauschfähigkeit von Lithiumionen an Bentonit durch Erhitzung Zeitschrift für Anorganische Chemie 262 9599 10.1002/zaac.19502620114.CrossRefGoogle Scholar
Karakassides, M.A. Madejová, J. Arvaiová, B. Bourlinos, A. Petridis, D. and Komadel, P., 1999 Location of Li(I), Cu(II) and Cd(II) in heated montmorillonite: evidence from specular reflectance infrared and electron spin resonance spectroscopies Journal of Materials Chemistry 9 15531558 10.1039/a900819e.CrossRefGoogle Scholar
Karmous, M.S. Ben Rhaiem, H. Naamen, S. Oueslati, W. and Ben Haj Amara, A., 2006 The interlayer structure and thermal behavior of Cu and Ni montmorillonite s Zeitschrift für Kristallographie, Supplement 23 431436 10.1524/zksu.2006.suppl_23.431.CrossRefGoogle Scholar
Kaufhold, S. and Decher, A., 2003 Natural acidic bentonites from the island of Milos, Greece Zeitschrift für Angewandte Geologie 49 712.Google Scholar
Kelm, U. Sanhueza, V. Madejová, J. Šuchá, V. and Elsass, F., 2001 Evaluation of identification methods for chrysocolla — a Cu-smectite-like hydrous silicate: implications for heap-leaching extraction of copper Geologica Carpathica 52 111121.Google Scholar
Komadel, P., 2003 Chemically modified smectites Clay Minerals 38 127138 10.1180/0009855033810083.CrossRefGoogle Scholar
Komadel, P. Madejová, J. and Bujdák, J., 2005 Preparation and properties of reduced-charge smectites — a review Clays and Clay Minerals 53 313334 10.1346/CCMN.2005.0530401.CrossRefGoogle Scholar
Madejová, J. Bujdák, J. Janek, M. and Komadel, P., 1998 Comparative FT-IR study of structural modifications during acid treatment of dioctahedral smectites and hecorite Spectrochimica Acta Part A 54 13971406 10.1016/S1386-1425(98)00040-7.CrossRefGoogle Scholar
Madejová, J. Arvaiová, B. and Komadel, P., 1999 FTIR spectroscopic characterization of thermally treated Cu2+, Cd2+, and Li+ montmorillonites Spectrochimica Acta Part A 55 24672476 10.1016/S1386-1425(99)00039-6.CrossRefGoogle Scholar
Madejová, J. Pálková, H. and Komadel, P., 2006 Behaviour of Li+ and Cu2+ in heated montmorillonite: Evidence from far-, mid-, and near-IR regions Vibrational Spectroscopy 40 8088 10.1016/j.vibspec.2005.07.004.CrossRefGoogle Scholar
McBride, M.B. and Mortland, M.M., 1974 Copper (II) interactions with montmorillonite: evidence from physical methods Soil Science Society of America Proceedings 38 408415 10.2136/sssaj1974.03615995003800030014x.CrossRefGoogle Scholar
Mehra, O.P. and Jackson, M.L. (1960) Iron oxide removal from soils and clays by a dithionite-citrate-system buffered with sodium bicarbonate. Proceedings of the 7th National Conference on Clays and Clay Minerals, Washington, D.C., pp. 317327.Google Scholar
Mortland, M.M. Fripiat, J.J. Chaussidon, J. and Uytterhoeven, J., 1963 Interaction between ammonia and the expanding lattices of montmorillonite and vermiculite The Journal of Physical Chemistry 67 248258 10.1021/j100796a009.CrossRefGoogle Scholar
Mosser, C. Michot, L.J. Villieras, F. and Romeo, M., 1997 Migration of cations in copper(II)-exchanged montmorillonite and laponite upon heating Clays and Clay Minerals 45 789802 10.1346/CCMN.1997.0450603.CrossRefGoogle Scholar
Oueslati, W. Ben Rhaiem, H. Karmous, M.S. Naaman, S. and Ben Haj Amara, A., 2006 Study of the structural evolution and selectivity of Wyoming montmorillonite in relation with concentration of Cu2+ and Ni2+ Zeitschrift für Kristallographie, Supplement 23 425429 10.1524/zksu.2006.suppl_23.425.CrossRefGoogle Scholar
Pálková, H. Madejová, J. and Righi, D., 2003 Acid dissolution of reduced-charge Li- and Ni-montmorillonites Clays and Clay Minerals 51 133142 10.1346/CCMN.2003.0510202.CrossRefGoogle Scholar
Pérez-Maqueda, L.A. de Jiménez Haro, M.C. Poyato, J. and Pérez-Rodríguez, J.L., 2003 Ammonia release on heating of mechanically treated vermiculite saturated subsequently with ammonium Journal of Thermal Analysis and Calorimetry 71 809820 10.1023/A:1023370024869.CrossRefGoogle Scholar
Pérez-Rodríguez, J.L. Poyato, J. de Jiménez Haro, M.C. Pérez-Maqueda, L.A. and Lerf, A., 2004 Thermal decomposition of -vermiculite from Santa Olalla (Huelva, Spain) and its relation to the metal ion distribution in the octahedral sheet Physics and Chemistry of Minerals 31 415420 10.1007/s00269-004-0406-y.CrossRefGoogle Scholar
Poyato, J. Pérez-Maqueda, L.A. de Jimenez Haro, M.C. Pérez-Rodríguez, J.L. Šubrt, J. and Balek, V., 2002 Effect of Na+ and cations on micro structure changes of natural vermiculite during heat treatment Journal of Thermal Analysis and Calorimetry 67 7382 10.1023/A:1013743829199.CrossRefGoogle Scholar
Seiffarth, T. and Kaps, C.h., 2005 Fixierung von Cu2+ bei der thermischen Behandlung von (,Cu2+)-ausgetauschten Bentoniten Berichte der Deutschen Ton- und Tonmineralgruppe e.V. 11 9396.Google Scholar
Shaiek, M. Karmous, M.S. Naamen, S. Ben Rhaiem, H. Ben Haj Amara, A. and Plançon, A., 2003 Structural evolution of the heated dioctahedral montmorillonite satured by Cu2+, Ni2+ and Cs+ Abstracts of the 10th Conference of the European Clay Groups Association, Euroclay 2003 .Google Scholar
Tettenhorst, R., 1962 Cation migration in montmorillonites American Mineralogist 47 769773.Google Scholar
Tributh, H. and Lagaly, G., 1986 Aufbereitung und Identifizierung von Boden- und Lagerstättentonen. I. Aufbereitung der Proben im Labor GIT Fachzeitschrift für das Laboratorium 30 524529.Google Scholar
Wolters, F., 2005 Classification of montmorillonites Germany Universität Karlsruhe 98 pp.Google Scholar
Wolters, F. and Emmerich, K., 2007 Thermal reactions of smectites — Relation of dehydroxylation temperature to octahedral structure Thermochimica Acta 462 8088 10.1016/j.tca.2007.06.002.CrossRefGoogle Scholar
Wright, A.C. Granquist, W.T. and Kennedy, J.V., 1972 Catalysis by layer lattice silicates. I. The structure and thermal modification of a synthetic ammonium dioctahedral clay Journal of Catalysis 25 6580 10.1016/0021-9517(72)90202-3.CrossRefGoogle Scholar