Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T10:49:20.706Z Has data issue: false hasContentIssue false

Stacking Faults in Kaolin-Group Minerals in the Light of Real Structural Features

Published online by Cambridge University Press:  02 April 2024

A. S. Bookin
Affiliation:
Geological Institute, Academy of Sciences of the U.S.S.R., Pyzevsky 7, Moscow 109017, U.S.S.R.
V. A. Drits
Affiliation:
Geological Institute, Academy of Sciences of the U.S.S.R., Pyzevsky 7, Moscow 109017, U.S.S.R.
A. Plançon
Affiliation:
Centre de Recherche sur les Solides à Organisation Cristalline Imparfaite and Université d'Orléans, 45100 Orléans, France
C. Tchoubar
Affiliation:
Université d'Orléans, Laboratoire de Cristallographie, ERA#841, 45100 Orléans, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A comparison of the structural characteristics of the kaolin-group minerals, mainly kaolinite and dickite, shows that they differ in both the two-dimensional periodicity in the 1:1 layers and the rotation angles of the polyhedra. Distortions in a real 1:1 layer, compared with an idealized layer, do not allow such stacking faults as ± 120° layer rotations and vacancy displacements, because the second layer is incommensurable with the first. The 1:1 layer structure and the fact that the unit cell is symmetrical with respect to the plane passing through the long diagonal of the unit cell suggest the possibility of defects resulting from the two stacking sequences for the same layers. For a regular alternation of translations, a halloysite-like structure should be the end-member of such a series of defect kaolinite types.

The formation of layers having vacant octahedral C-sites is another possible type of fault. Because of the minor dilference between γ and 90°, dickite-like layers should exist. A regular alternation of B and C layers yields dickite as the end-member structure. In materials containing few defects, stacking faults of both types lead to similar X-ray powder diffraction patterns. Thus, the nature of the stacking faults is difficult to determine experimentally. In materials containing many defects, however, the two models lead to different calculated diffraction patterns. Therefore, only a study of defect-rich types of kaolinite can determine which types of defects exist in natural kaolinite samples.

Сравнение структурных характеристик минералов каолиновой группы, в основном као- линита и диккита, показало, что они различаются как в отношении двумерной периодичности их 1: 1 слоев, так и углами разворота полиэдров. Искожения реальных 1:1 слоев по сравнению с идеали- зированными не позволяют реализоваться таким дефектам упаковки, как вращние на ± 120° и смена положения вакансии, поскольку второй слой сказался бы несоразмерным с первым. Строение 1:1 слоя и элементарной ячейки, будучи симметричны относительно плоскости, проходящей через длин- ную диагональ элементарной ячейки, предопределяют возможность возникновения дефектов упа- ковки, вызванных двумя способами наложения однотипных смежных слоев, в случае их регулярного чередования конечным членом такого ряда дефектных каолинитов была бы структура галлуазитового типа.

Возникновение слоев с вакантной с позицией представляется другим допустимым типом ошибок. Вследствие малого отклонения угла гамма от 90° могли бы встречаться диккито-подобные встройки, давая при упорядоченном чередовании слоев в и с диккит как конечный член ряда, в образцах с низкми содержанием дефектов оба типа ошибок приводят к близкому профилю рентгеновской ди- фракции и природу ошибок экспериментально установить сложно, в образцах с высокой концентра- цией дефектов две модели ведут к различным дифракционным картинам, поэтому изучение сильно дефетных каолинитов может ответить на вопрос, какой тип дефектов встречается в природный образ- цах.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Adams, J. M. and Hewat, A. W., 1981 Hydrogen atom positions in dickite Clays & Clay Minerals 29 316319.CrossRefGoogle Scholar
Bailey, S. W., Brindley, G. W. and Brown, G., 1980 Structures of layer silicates Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.Google Scholar
Blount, A. M., Threadgold, I. M. and Bailey, S. W., 1969 Refinement of the crystal structure of nacrite Clays & Clay Minerals 17 185194.CrossRefGoogle Scholar
Brindley, G. W. and Brown, G., 1961 Kaolin, serpentine, and kindred minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society 51131.Google Scholar
Brindley, G. W., Brindley, G. W. and Brown, G., 1980 Order-disorder in clay minerals Crystal Structures of Clay Minerals and their X-ray Identification London Mineralogical Society.CrossRefGoogle Scholar
Brindley, G. W. and Robinson, K., 1946 Randomness in the structures of kaolinitic clay minerals Trans. Faraday Soc. 42B 198205.CrossRefGoogle Scholar
Brindley, G. W., Kao, C., Harrison, J. L., Lipsicas, M. and Raythatha, R., 1986 The relation between structural disorder and other characteristics of kaolinite and dickite Clays & Clay Minerals 34 239249.CrossRefGoogle Scholar
Chukhrov, F. V., Zvyagin, B. B., Rudnitskaya, E. S. and Ermilova, L. P., 1966 The nature and genesis of halloysite Izv. Akad. Nauk S.S.S.R., Ser. Geol. 1966 320.Google Scholar
Drits, V. A. and Kashaev, A. A., 1960 An X-ray diffraction study of a single crystal of kaolinite Soviet Phys. Crystallogr. 5 207210.Google Scholar
Giese, R. F., 1982 Theoretical studies of the kaolin minerals: Electrostatic calculations Bull. Mineral. 105 417424.Google Scholar
Goodyear, B. and Duflin, M. A., 1961 An X-ray examination of an exceptionally well crystallized kaolinite Mineral. Mag. 32 902907.Google Scholar
Joswig, W. and Drits, V. A., 1986 The orientation of the hydroxyl groups in dickite by X-ray diffraction N. Jb. Miner. Mh. H1 1922.Google Scholar
Mitra, G. B. and Bhattacherjee, S., 1970 X-ray diffraction studies of the transformation of kaolinite into metakaolin: Study of layer shift Acta Crystallogr. B26 21242128.CrossRefGoogle Scholar
Murray, H. H., 1954 Structural variations of some kaolinites in relation to dehydrated halloysite Amer. Mineral. 39 97108.Google Scholar
Newnham, R. E., 1961 A refinement of the dickite structure and some remarks on polymorphism in kaolin minerals Mineral. Mag. 32 683704.Google Scholar
Noble, F. R., 1971 A study of disorder in kaolinite Clay Miner. 9 7181.CrossRefGoogle Scholar
Plançon, A., 1981 Diffraction by layer structures containing different kinds of layers and stacking faults J. Appl. Crystallogr. 14 300304.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray diffraction. I. Principle of calculation of the diffraction phenomenon Clays & Clay Minerals 25 430435.CrossRefGoogle Scholar
Plançon, A. and Tchoubar, C., 1977 Determination of structural defects in phyllosilicates by X-ray diffraction. II. Nature and proportion of defects in natural kaolinites Clays & Clay Minerals 25 436450.CrossRefGoogle Scholar
Rozdestvenskaya, I. V., Bookin, A. S., Drits, V. A. and Finko, V. I., 1982 Proton positions and structural peculiarities of dickite by X-ray diffraction Mineral. Zh. 4 5258 (in Russian).Google Scholar
Sakharov, B. A., Naumov, A. S. and Drits, V. A., 1982 X-ray diffraction by mixed-layer structures having abundant distribution of stacking faults Dokl. Akad. Nauk S.S.S.R. 265 339343.Google Scholar
Samotoin, N. D., 1966 Study of surface of kaolinite and dickite monocrystals by decoration method Zap. Vses. Mineral. Obshch. 95 390399.Google Scholar
Sen Gupta, P. K., Schlemper, E. O., Johns, W. D. and Ross, F., 1984 Hydrogen positions in dickite Clays & Clay Minerals 32 483485.CrossRefGoogle Scholar
Suitch, P. R. and Young, R. A., 1983 Atom position in highly ordered kaolinite Clays & Clay Minerals 31 357366.CrossRefGoogle Scholar
Tchoubar, C., Plançon, A., Ben Brahim, J., Clinard, C. and Sow, C., 1982 Caractéristiques structurales des kaolinites desordonées Bull. Minéral. 105 477491.CrossRefGoogle Scholar
Thompson, J. G. and Cuff, C., 1985 Crystal structure of kaolinite: dimethylsulfoxide intercalate Clays & Clay Minerals 33 490500.CrossRefGoogle Scholar
Zvyagin, B. B., 1960 Electron diffraction determination of the structure of kaolinite Soviet Phys. Crystallogr. 5 3241 (in Russian).Google Scholar
Zvyagin, B. B., 1964 Electron Diffraction Analysis of Clay Mineral Structures Moscow Nauka (translation, 1967, Plenum Press, New York, 364 pp.).Google Scholar