Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T19:59:07.825Z Has data issue: false hasContentIssue false

Stability of the Hydronium Cation in the Structure of Illite

Published online by Cambridge University Press:  01 January 2024

Elizabeth Escamilla-Roa
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100, Armilla, Granada, Spain
Fernando Nieto
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100, Armilla, Granada, Spain Departamento de Mineralogía y Petrología, Universidad de Granada, Avenida Fuentenueva, 18002, Granada, Spain
C. Ignacio Sainz-Díaz*
Affiliation:
Instituto Andaluz de Ciencias de la Tierra (CSIC-University of Granada), Av. de las Palmeras 4, 18100, Armilla, Granada, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Some aspects of the crystal structure of illite are not understood properly yet, in spite of its abundance and significance as a component of soils, sediments, and low-grade metamorphic rocks. The present study aimed to explore the role of hydronium cations in the interlayer space of illite in a theoreticalexperimental approach in order to clarify previous controversial reports. The infrared spectroscopy of this mineral has been studied experimentally and by means of atomistic calculations at the quantum mechanical level. The tetrahedral charge is critical for the stability of the hydronium cations, the presence of which has probably been underestimated in previous studies. In the present study, computational studies have shown that the hydronium cations in aqueous solutions are likely to be intercalated in the interlayer space of illite, exchanging for K cations. During the drying process these cations are stabilized by hydrogen bonds in the interlayer space of illite.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

Footnotes

This paper is published as part of a special issue on the subject of ‘Computational Molecular Modeling’. Some of the papers were presented during the 2015 Clay Minerals Society-Euroclay Conference held in Edinburgh, UK.

References

Accelrys, 2009 Accelrys Inc. San Diego, California, USA Materials Studio.Google Scholar
Baer, M. Marx, D. and Mathias, G., 2011 Assigning predissociation infrared spectra of microsolvated hydronium cations H3O+(H2O)n (n = 0, 1, 2, 3) by ab initio molecular dynamics ChemPhysChem 12 19061915.CrossRefGoogle Scholar
Benco, L. and Tunega, D., 2009 Adsorption of H2O, NH3 and C6H6 on alkali metal cations in internal surface of mordenite and in external surface of smectite: a DFT study Physics and Chemistry of Minerals 36 281290.CrossRefGoogle Scholar
Bishop, J.L. Pieters, C.M. and Edwards, J.O., 1994 Infrared spectroscopic analyses on the nature of water in montmorillonite Clays and Clay Minerals 42 702716.CrossRefGoogle Scholar
Boulet, P. Greenwell, H.C. Stackhouse, S. and Coveney, P.V., 2006 Recent advances in understanding the structure and reactivity of clays using electronic structure calculations Journal of Molecular Structure: Theochem 762 3348.CrossRefGoogle Scholar
Brorsen, K.R. Pruitt, S.R. and Gordon, M.S., 2014 Surface affinity of the hydronium Ion: The effective fragment potential and umbrella sampling Journal of Physical Chemistry B 118 1438214387.CrossRefGoogle ScholarPubMed
Brown, G. and Norrish, K., 1952 Hydrous micas Mineralogical Magazine 29 929932.CrossRefGoogle Scholar
Demontis, P. Masia, M. and Suffritti, G.B., 2013 Water nanoconfined in clays: the structure of Na vermiculite revisited by ab initio simulations Journal of Physical Chemistry C 117 1558315592.CrossRefGoogle Scholar
Drits, V.A. Plançon, A. Sakharov, B.A. Besson, G. Tsipurski, S.I. and Tchoubar, C., 1984 Diffraction effects calculated for structural models of K-saturated montmorillonite containing different types of defects Clay Minerals 19 541561.Google Scholar
Escamilla-Roa, E. and Moreno, F., 2012 Adsorption of glycine by cometary dust: Astrobiological implications Planetary and Space Science 70 19.CrossRefGoogle Scholar
Escamilla-Roa, E. and Moreno, F., 2013 Adsorption of glycine on cometary dust grains: II — Effect of amorphous water ice Planetary and Space Science 75 110.CrossRefGoogle Scholar
Escamilla-Roa, E. and Sainz-Díaz, C.I., 2014 Effect of amorphous ammonia-water ice onto adsorption of glycine on cometary dust grain and IR spectroscopy Journal of Physical Chemistry C 118 2608026090.CrossRefGoogle Scholar
Escamilla-Roa, E. Hernández-Laguna, A. and Sainz-Díaz, C.I., 2013 Cation arrangement in the octahedral and tetrahedral sheets of cis-vacant polymorph of dioctahedral 2:1 phyllosilicates by quantum mechanical calculations American Mineralogist 98 724735.CrossRefGoogle Scholar
Escamilla-Roa, E. Hernández-Laguna, A. and Sainz-Díaz, C.I., 2014 Theoretical study of the hydrogen bonding and infrared spectroscopy in the cis-vacant polymorph of dioctahedral 2:1 phyllosilicates Journal of Molecular Modeling 20 115.CrossRefGoogle Scholar
Fialips, C.I. Huo, D. Yan, L. Wu, J. and Stucki, J.W., 2002 Infrared study of seduced and reduced-reoxidized ferruginous smectite Clays and Clay Minerals 50 455469.CrossRefGoogle Scholar
Giese, R., 1979 Hydroxyl orientations in 2:1 phyllosilicates Clays and Clay Minererals 27 213223.CrossRefGoogle Scholar
Hower, J. and Mowatt, T.C., 1966 The mineralogy of illites and mixed-layer illite/montmoril lonites American Mineralogist 51 825854.Google Scholar
Kuligiewicz, A. Derkowski, A. Szczerba, M. Gionis, V. and Chryssikos, G.D., 2015 Revisiting the infrared spectrum of the water-smectite interface Clays and Clay Minerals 63 1529.CrossRefGoogle Scholar
Leydier, F. Chizallet, C. Costa, D. and Raybaud, P., 2015 Revisiting carbenium chemistry on amorphous silica-alumina: Unraveling their milder acidity as compared to zeolites Journal of Catalysis 325 3547.CrossRefGoogle Scholar
Liu, X. Lu, X. Sprik, M. Cheng, J. Meijer, E.J. and Wang, R., 2013 Acidity of edge surface sites of montmorillonite and kaolinite Geochimica et Cosmochimica Acta 117 180190.CrossRefGoogle Scholar
Michot, L.J. Ferrage, E. Jiménez-Ruiz, M. Boehm, M. and Delville, A., 2012 Anisotropic features of water and ion dynamics in synthetic Na- and Ca-smectites with tetrahedral layer charge. A combined quasielastic neutron-scattering and molecular dynamics simulations study Journal of Physical Chemistry C 116 1661916633.CrossRefGoogle Scholar
Morrow, C.P. Yazaydin, A.O. Krishnan, M. Bowers, G.M. Kalinichev, A.G. and Kirkpatrick, R.J., 2013 Structure, energetics, and dynamics of smectite clay interlayer hydration: Molecular dynamics and metadynamics investigation of Na-hectorite Journal of Physical Chemistry C 117 51725187.CrossRefGoogle Scholar
Nieto, F. Mellini, M. and Abad, I., 2010 The role of H3O+ in the crystal structure of illite Clays and Clay Minerals 58 238246.CrossRefGoogle Scholar
Ortega-Castro, J. Hernández-Haro, N. Hernández-Laguna, A. and Sainz-Díaz, C.I., 2008 DFT calculation of crystallographic properties of dioctahedral 2:1 phyllosilicates Clay Minerals 43 351361.CrossRefGoogle Scholar
Ortega-Castro, J. Hernández-Haro, N. Muñoz-Santiburcio, D. Hernández-Laguna, A. and Sainz-Díaz, C.I., 2009 Crystal structure and hydroxyl group vibrational frequencies of phyllosilicates by DFT methods Journal of Molecular Structure: Theochem 912 8287.CrossRefGoogle Scholar
Perdew, J.P. Burke, K. and Ernzerhof, M., 1996 Generalized gradient approximation made simple Physics Review Letters 77 3865.CrossRefGoogle ScholarPubMed
Rieder, M. Cavazzini, G. D’yakonov, Y.S. Frank-Kamenetskii, V.A. Gottardi, G. Guggenheim, S. Koval, P.V. Mueller, G. Neiva, A.M.R. Radoslovich, E.W. Robert, J.-L. Sassi, F.P. Takeda, H. Weiss, Z. and Wones, D.R., 1998 Nomenclature of the micas Clays and Clay Minerals 46 586595.CrossRefGoogle Scholar
Russell, J. and Fraser, A., 1971 IR spectroscopic evidence for interaction between hydronium ions and lattice OH groups in montmorillonite Clays and Clay Minerals 19 5559.CrossRefGoogle Scholar
Sainz-Díaz, C.I. Hernández-Laguna, A. and Dove, M.T., 2001 Theoretical modelling of cis-vacant and trans-vacant configurations in the octahedral sheet of illites and smectites Physics and Chemistry of Minerals 28 322331.CrossRefGoogle Scholar
Sainz-Díaz, C.I. Palin, E.J. Dove, M.T. and Hernández-Laguna, A., 2003 Monte Carlo simulations of ordering of Al, Fe, and Mg cations in the octahedral sheet of smectites and illites American Mineralogist 88 10331045.CrossRefGoogle Scholar
Sainz-Díaz, C.I. Escamilla-Roa, E. and Hernández-Laguna, A., 2005 Quantum mechanical calculations of trans-vacant and cis-vacant polymorphism in dioctahedral 2:1 phyllosilicates American Mineralogist 90 18271834.CrossRefGoogle Scholar
Tokiwai, K. and Nakashima, S., 2010 Integral molar absorptivities of OH in muscovite at 20 to 650°C by in-situ high-temperature IR microspectroscopy American Mineralogist 95 10521059.CrossRefGoogle Scholar
Wang, J. Kalinichev, A.G. Kirkpatrick, R.J. and Cygan, R.T., 2005 Structure, energetics, and dynamics of water adsorbed on the muscovite (001) surface: A molecular dynamics simulation Journal of Physical Chemistry B 109 1589315905.CrossRefGoogle ScholarPubMed
White, J.L. and Burns, A.F., 1963 Infrared spectra of hydronium ion in micaceous minerals Science 141 800801.CrossRefGoogle ScholarPubMed
Xu, W. Johnston, C.T. Parker, P. and Agnew, S.F., 2000 Infrared study of water sorption on Na, Li, Ca, and Mg-exchanged (SWy-1 and SAz-1) montmorillonite Clays and Clay Minerals 48 120131.CrossRefGoogle Scholar