Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-26T03:25:47.773Z Has data issue: false hasContentIssue false

Spiral Structure of 7 Å Halloysite: Mathematical Models

Published online by Cambridge University Press:  01 January 2024

Girija Bhushan Mitra*
Affiliation:
Indian Association for the Cultivation of Science, Jadavpur, Calcutta 700 032, West Bengal, India
*
Current address: 284B Rash Behari Avenue, Kolkata 700 019, West Bengal, India
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Halloysite is used for targeted delivery of drugs and other biomolecules. Renewed interest in examination by X-ray diffraction (XRD) to predict the size of particles that can be loaded onto the nanotubes has resulted. Anhydrous halloysite consists of spiraled tubules the length and diameter of which can be determined by measurement using an electron microscope. In spite of ample evidence regarding the spiral structure of halloysite, current programs to evaluate the structure of halloysite nanotubes consider it to be a hollow tube or a cylinder which prevents accurate prediction of its structure and leads to misinformation about the sizes of materials that can be loaded onto the nanotubes. The overall objective of the current study was to derive equations to estimate the structure of halloysite nanotubes which take into consideration its spiral structure. The study of Fourier transform either by electron diffraction or XRD led to the measurement of the spiral thickness and the nature of the spiral. Calculations of the nanotube dimensions may determine the ability of these carriers to allow the mechanical delivery of certain drugs. Here the structure of hydrated halloysite (hollow cylindrical tubes with a doughnut-like cross-section) and anhydrous halloysite (spiraled or helical structure) are described as previously reported in the literature. The Fourier transform of the spiraled structure was selected based on three different kinds of spirals: the Archimedean spiral, the Power spiral, and the Logarithmic spiral. Programs used to define the crystal structure of materials and to calculate the Fourier transform need to take the spiral structure into consideration.

Type
Research Article
Copyright
Copyright © Clay Minerals Society 2013

References

Abdullayev, E. and Lvov, Y., 2010 Clay nanotubes for corrosion inhibitor encapsulation: Release control with end stoppers. Journal of Materials Chemistry 20 66816687.CrossRefGoogle Scholar
Abdullayev, E. Price, R. Shchukin, D. and Lvov, Y., 2009 Halloysite tubes as nanocontainers for anticorrosion coating with benzotriazole. ACS Applied Materials and Interfaces 1 14371443.CrossRefGoogle ScholarPubMed
Abdullayev, E. Joshi, A. Wei, W. Zhao, Y. and Lvov, Y., 2012 Enlargement of halloysite clay nanotube lumen by selective etching of aluminum oxide. ACS Nano 6 72167226.CrossRefGoogle ScholarPubMed
Bobos, I.I. Duplay, J. Rocha, J. and Gomes, C.S.F., 2001 Kaolinite to halloysite-7 Å transformation in the kaolin deposit of São Vicente de Pereira, Portugal. Clays and Clay Minerals 49 596607.CrossRefGoogle Scholar
Brindley, G.W. and Robinson, K., 1948 X-ray studies of halloysite and metahalloysite. Part I. The structure of metahalloysite, an example of a random layer lattice. Mineralogical Magazine 28 393406.CrossRefGoogle Scholar
Brondani, D. Scheeren, C.W. Dupont, J. and Vieira, I.C., 2012 Halloysite clay nanotubes and platinum nanoparticles dispersed in ionic liquid applied in the development of a catecholamine biosensor. Analyst 137 37323739.CrossRefGoogle ScholarPubMed
Bursill, L.A., 1990 Quasicrystallography on the spiral of archimedes. International Journal of Modern Physics B 4 21972216.CrossRefGoogle Scholar
Cowley, J., 1961 Diffraction intensities from bent crystals. Acta Crystallographica 14 920927.CrossRefGoogle Scholar
Ece, O.I. and Schroeder, P.A., 2007 Clay mineralogy and chemistry of halloysite and alunite deposits in the Turplu area, Balikesir, Turkey. Clays and Clay Minerals 55 1835.CrossRefGoogle Scholar
Ferris, T.L.J. Nafalski, A. Saghafifar, M., Tsuboi, H. and Sebestyen, I., 2001 Matching observed spiral form curves to equations of spirals in 2-d images Applied Electromagnetics and Computational Technology 151158.Google Scholar
Ghebaur, A. Garea, S.A. and Iovu, H., 2012 New polymer-halloysite hybrid materials - a potential controlled drug release system. International Journal of Pharmacy 436 568573.CrossRefGoogle ScholarPubMed
Honzo, G. and Mihama, K., 1954 A study of clay minerals by electron-diffraction diagrams due to individual crystallites. Acta Crystallographica 7 511513.Google Scholar
Hope, E.W. and Kittrick, J.A., 1964 Surface tension and the morphology of halloysite. American Mineralogist 49 859866.Google Scholar
Hughes, A.D. and King, M.R., 2010 Use of naturally occurring halloysite nanotubes for enhanced capture of flowing cells Langmuir 26 1215512164.CrossRefGoogle ScholarPubMed
Jagodzinski, H. and Kunze, G., 1954 Die Rollchenstruktur des Chrysotils. I. Allgemeine Beugungtheorie und Kleinwinkelstreung Neues Jahrbuch für Mineralogie Monatshefte 95108.Google Scholar
Jagodzinski, H. and Kunze, G., 1954 Die Rollchenstruktur des Chrysotils 111. Versetzungswachstum der Rollchen Neues Jahrbuch für Mineralogie Monatshefte 137150.Google Scholar
Jagodzinski, H. and Kunze, G., 1954 Die Rollchenstruktur des Chrysotils. II. Weitwinkleninteferenzen Neues Jahrbuch für Mineralogie Monatshefte 113130.Google Scholar
Joo, Y. Jeon, Y. Lee, S.U. Sim, J.H. Ryu, J. Lee, S. Lee, H. and Sohn, D., 2012 Aggregation and stabilization of carboxylic acid functionalized halloysite nanotubes (HNT-COOH) The Journal of Physical Chemistry C 116 1823018235.CrossRefGoogle Scholar
Kirkman, J.H., 1977 Possible structure of halloysite disks and cylinders observed in some New Zealand rhyolitic tephras Clay Minerals 12 199216.CrossRefGoogle Scholar
Kirkman, J.H., 1981 Morphology and structure of halloysite in New Zealand tephras Clays and Clay Minerals 29 19.CrossRefGoogle Scholar
Kohyama, N. Fukushima, K. and Fukami, A., 1978 Observation of the hydrated form of tubular halloysite by an electron microscope equipped with an environmental cell Clays and Clay Minerals 26 2540.CrossRefGoogle Scholar
sLa Iglesia, A. and Galán, E., 1975 Halloysite-kaolinite transformation at room temperature Clays and Clay Minerals 23 109113.CrossRefGoogle Scholar
Levis, S.R. and Deasy, P.B., 2002 Characterisation of halloysite for use as a microtubular drug delivery system International Journal of Pharmacy 243 125134.CrossRefGoogle ScholarPubMed
Levis, S.R. and Deasy, P.B., 2003 Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride International Journal of Pharmacy 253 145157.CrossRefGoogle ScholarPubMed
Lvov, Y.M. Shchukin, DG M H and Price, R.R., 2008 Halloysite clay nanotubes for controlled release of protective agents ACS Nano 2 814820.CrossRefGoogle ScholarPubMed
Mitra, G.B., 1957 X-ray diffraction study of the heat treatment of kaolinite Indian Journal of Physics 31 324328.Google Scholar
Mitra, G.B., 1963 Structure defects in kaolinite. Zeitschrift für Kristallographie 119 161175.CrossRefGoogle Scholar
Mitra, G.B., 2012 Fourier transform of tubular objects with spiral structures Journal of Crystallization Process and Technology 2 133138.CrossRefGoogle Scholar
Mitra, G.B. and Bhattacherjee, S., 1975 The structure of halloysite Acta Crystallographica Section B 31 28512857.CrossRefGoogle Scholar
Oliveira, MTGd Furtado, S.M.A. Formoso, M.L.L. Eggleton, R.A. and Dani, N., 2007 Coexistence of halloysite and kaolinite: A study on the genesis of kaolin clays of Campo Alegre basin, Santa Catarina State, Brazil Anais da Academia Brasileira de Ciências 79 665681.CrossRefGoogle Scholar
Pierce, B.O. and Foster, R.M., 1966 A Short Table of Integrals 4th edition.Google Scholar
Qi, R. Cao, X. Shen, M. Guo, R. Yu, J. and Shi, X., 2012 Biocompatibility of electrospun halloysite nanotube-doped poly(lactic-co-glycolic acid) composite nanofibers. Journal of Biomaterials Science, Polymer Edition 23 299313.CrossRefGoogle ScholarPubMed
Qiao, J. Adams, J. and Johannsmann, D., 2012 Addition of halloysite nanotubes prevents cracking in drying latex films Langmuir 28 86748680.CrossRefGoogle ScholarPubMed
Robertson, I.D.M. and Eggleton, R.A., 1991 Weathering of granitic muscovite to kaolinite and halloysite and of plagioclase-derived kaolinite to halloysite Clays and Clay Minerals 39 113126.CrossRefGoogle Scholar
Shchukin, D.G. Sukhorukov, G.B. Price, R.R. and Lvov, Y.M., 2005 Halloysite nanotubes as biomimetic nanoreactors Small 1 510513.CrossRefGoogle ScholarPubMed
Shi, Y.F. Tian, Z. Zhang, Y. Shen, H.B. and Jia, N.Q., 2011 Functionalized halloysite nanotube-based carrier for intracellular delivery of antisense oligonucleotides Nanoscale Research Letters 6 608.CrossRefGoogle ScholarPubMed
Singh, B., 1996 Why does halloysite roll? - a new model Clays and Clay Minerals 44 191196.CrossRefGoogle Scholar
Taggart, M.S. Jr. Milligan, W.O. and Studer, H.P., 1954 Electron micrographic studies of clays Clays and Clay Minerals 3 3195.CrossRefGoogle Scholar
Tazaki, K. and Fyfe, W.S., 1987 Primitive clay precursors formed on feldspar Canadian Journal of Earth Sciences 24 506527.CrossRefGoogle Scholar
Vergaro, V. Abdullayev, E. Lvov, Y.M. Zeitoun, A. Cingolani, R. Rinaldi, R. and Leporatti, S., 2010 Cytocompatibility and uptake of halloysite clay nanotubes Biomacromolecules 11 820826.CrossRefGoogle ScholarPubMed
Vergaro, V. Lvov, Y.M. and Leporatti, S., 2012 Halloysite clay nanotubes for resveratrol delivery to cancer cells Macromolecular Bioscience 12 12651271.CrossRefGoogle ScholarPubMed
Vigodsky, M., 1975.Mathematical Handbook - Higher Mathematics.Google Scholar
Viseras, M.T. Aguzzi, C. Cerezo, P. Cultrone, G. and Viseras, C., 2009 Supramolecular structure of 5-amino-salycilic acid/halloysite composites Journal of Microencapsulation 26 279286.CrossRefGoogle Scholar
Warren, B.E., 1941 X-ray diffraction in random layer lattices Physical Review 59 693698.CrossRefGoogle Scholar
Waser, J., 1955 Fourier transforms and scattering intensities of tubular objects Acta Crystallographica 8 142150.CrossRefGoogle Scholar
Whittaker, E., 1955 A classification of cylindrical lattices Acta Crystallographica 8 571574.CrossRefGoogle Scholar
Whittaker, E., 1956 The structure of chrysotile. II. Clinochrysotile Acta Crystallographica 9 855862.CrossRefGoogle Scholar
Williamson, G.K. and Hall, W.H., 1953 X-ray line broadening from filed aluminium and wolfram Acta Metallurgica 1 2231.CrossRefGoogle Scholar
Yuan, P. Southon, P.D. Liu, Z. Green, M.E.R. Hook, J.M. Antill, S.J. and Kepert, C.J., 2008 Functionalization of halloysite clay nanotubes by grafting with γ-aminopropyl-triethoxysilane Journal of Physical Chemistry C 112 1574215751.CrossRefGoogle Scholar
Yuan, P. Southon, P.D. Liu, Z. and Kepert, C.J., 2012 Organosilane functionalization of halloysite nanotubes for enhanced loading and controlled release Nanotechnology 23 375705375709.CrossRefGoogle ScholarPubMed
Yuan, P. Tan, D. Annabi-Bergaya, F. Yan, W. Fan, M. Liu, D. and He, H., 2012 Changes in structure, morphology, porosity, and surface activity of mesoporous halloysite nanotubes under heating Clays and Clay Minerals 60 561573.CrossRefGoogle Scholar
Zhang, H. Lei, X. Yan, C. Wang, H. Xiao, G. Hao, J. Wang, D. and Qiu, X., 2012 Analysis of the crystal structure of 7 Å-halloysite Advanced Materials Research 22062214.CrossRefGoogle Scholar