Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-10T23:29:54.398Z Has data issue: false hasContentIssue false

Spectroscopic Approach for Investigating the Status and Mobility of Ti in Kaolinitic Materials

Published online by Cambridge University Press:  28 February 2024

Nathalie Malengreau*
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris 6 et 7, 4 Place Jussieu, 75 252 Paris Cedex 05, France
Jean-Pierre Muller
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris 6 et 7, 4 Place Jussieu, 75 252 Paris Cedex 05, France O.R.S.T.O.M., Département T.O.A., 213 Rue La Fayette, 75 480 Paris Cedex 10, France
Georges Calas
Affiliation:
Laboratoire de Minéralogie-Cristallographie, URA CNRS 09, Universités de Paris 6 et 7, 4 Place Jussieu, 75 252 Paris Cedex 05, France
*
*Present address: Dr. Nathalie Malengreau, ESPM-ESD, University of California, 108 Hilgard Hall, Berkeley, California 94720.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The form under which Ti occurs in kaolinitic materials from various environments has been investigated using second derivative diffuse reflectance spectroscopy. The position of the absorption edge may be used as a diagnostic band to determine Ti-phases (anatase, rutile, Ti-gels). Ti-oxides may be detected in kaolins, down to 0.1 wt. % TiO2. Diffuse reflectance spectra show the presence of Ti-gel-like phases occluded in sedimentary kaolinite particles. These phases, which record conditions at the time of kaolinite growth, constitute the first direct evidence of Ti mobility at the scale of mineral assemblages and question the substitution of Ti for Al in kaolinite. The nature of the Ti-oxides associated with kaolinite particles gives some constraints on the temperature conditions of hydrothermal kaolins, the evolution of sedimentary kaolin during basin diagenesis and the source of parental material in soil kaolins.

Type
Research Article
Copyright
Copyright © 1995, The Clay Minerals Society

References

Aniel, B., and Leroy, J. 1985. The reduced uraniferous mineralizations associated with the volcanic rocks of the Sierra Peña Blanca (Chihuahua, Mexico). Amer. Mineral. 70: 12901297.Google Scholar
Bain, D. C., 1976. A titanium-rich soil clay. J. Soil Sci. 27: 6870.Google Scholar
Berrow, M. L., Wilson, M. J., and Reaves, G. A. 1978. Origin of extractable titanium and vanadium in the A horizons of Scottish podzols. Geoderma 21: 89103.Google Scholar
Beauvais, A., and Colin, F. 1993. Formation and transformation processes of iron duricrust systems in tropical humid environment. Chem. Geol. 106: 77101.Google Scholar
Bevan, H., Dawes, S. V., and Ford, R. A. 1958. The electronic spectrum of titanium dioxide. Spectrochim. Acta 13: 4349.CrossRefGoogle Scholar
Brimhall, G. H., and Dietrich, W. E. 1987. Constitutive mass balance relations between chemical composition, volume, density, porosity and strain in metasomatic hydrochemical systems: results on weathering and pedogenesis. Geochim. Cosmochim. Acta 51: 567587.Google Scholar
Bulent, E. Y., 1986. Hydrolysis of titanium alkoxide and effects of hydrolytic polycondensation parameters. J. Mat. Sci. 21: 10871092.Google Scholar
Burns, R. G., 1985. Electronic spectra of minerals. In Chemical Bonding and Spectroscopy in Mineral Chemistry. Berry, F. J., and Vaughan, D. J., eds. London, New York: Chapman and Hall, 63101.CrossRefGoogle Scholar
Calas, G., 1977. Les phénomènes d'altération hydrothermale et leur relation avec les minéralisations uranifères en milieu volcanique: le cas des ignimbrites tertiaires de la Sierra de Peña Blanca, Chihuahua (Mexique). Sci. Géol. Bull. 30: 318.Google Scholar
Delineau, T., Allard, T., Muller, J-P., Barres, O., Yvon, J., and Cases, J-M. 1994. FTIR reflectance vs. EPR studies of structural iron in kaolinites. Clays & Clay Miner. 42: 308320.Google Scholar
Dolcater, D. L., Syers, J. K., and Jackson, M. L. 1970. Titanium as free oxide and substituted forms in kaolinites and other clay minerals. Clays & Clay Miner. 18: 7179.Google Scholar
Dumon, J-C., 1976. Action d'acides organiques divers sur des minéraux titanés (ilménite et rutile). Comparaison de leur pouvoir d'extraction du titane avec celui d'acides minéraux. Bull. Soc. Géol. Fr. 18: 7579.CrossRefGoogle Scholar
Faivre, P., Herrera, V., Burgos, L., Jimenez, L., Molina, C., and Ruiz, E. 1983. Estudia general de suelos de la Comisaria de Vichada. Llanos Orientales de Colombia. I.G.A.C., Bogota, 462 pp.Google Scholar
Fitzpatrick, R. W., Roux, J. Le, and Schwertmann, U. 1978. Amorphous and crystalline titanium and iron-titanium oxides in synthetic preparations, at near ambient conditions, and in soil clays. Clays & Clay Miner. 26: 189201.Google Scholar
Gaviria, S., 1993. Evolution minéralogique et géochimique du fer et de l'aluminium dans des sols ferrallitiques hydro-morphes des Llanos Orientales de Colombie. Les états précoces du cuirassement. Thèse Univ. Nancy, 219 pp.Google Scholar
George-Aniel, B., Leroy, J. L., and Poty, B. 1991. Volca-nogenic uranium mineralizations in the Sierra Peña Blanca District, Chihuahua, Mexico: Three genetic models. Econ. Geol. 86: 233248.Google Scholar
Grey, I. E., Li, C., and Watts, J. A. 1983. Hydrothermal synthesis of goethite-rutile intergrowth structures and their relationship to rutile. Amer. Mineral. 68: 991998.Google Scholar
Hunt, G. R., Salisbury, J. W. and Lenhoff, C. J. 1971. Visible and near-infrared spectra of minerals and rocks. III. Oxides and hydroxides. Modern Geol. 2: 195205.Google Scholar
Hutton, T. J., 1977. Titanium and zirconium minerals. In Minerals in Soil Environment. Dixon, J. B., and Weed, S. B., eds. Madison: Soil Sci. Soc. Am., 673688.Google Scholar
Ildefonse, P., Agrinier, P., and Muller, J. P. 1990. Crystal chemistry and isotope geochemistry of alteration associated with the uranium Nopal I deposit, Chihuahua, Mexico. Chem. Geol. 84: 371372.CrossRefGoogle Scholar
Jackson, N. J., Willis-Richard, J., Manning, D. A. C., and Sams, M. S. 1989. Evolution of the Cornubian ore field, Southwest England: Part II. Mineral deposits and ore-forming processes. Econ. Geol 84: 11011133.Google Scholar
Jepson, W. B., 1988. Structural iron in kaolinites and in associated ancillary minerals. In Iron in Soil and Clay Minerals. Stucki, J. W., Goodman, B. A., and Schwertmann, U., eds. Dordrecht, Reidel: 467536.Google Scholar
Jepson, W. B., and Rowse, J. B. 1975. The composition of kaolinite. An electron microscope microprobe study. Clays & Clay Miner. 23: 310317.Google Scholar
Karickhoff, S. W., and Bailey, G. W. 1973. Optical absorption spectra of clay minerals. Clays & Clay Miner. 21: 5970.Google Scholar
Malengreau, N., Muller, J-P., and Calas, G. 1994. Fe-speciation in kaolins: a diffuse reflectance study. Clays & Clay Miner. 42: 137147.Google Scholar
Maynard, R. N., Millman, N., and lannicelli, J. 1969. A method for removing titanium dioxide impurities from kaolin. Clays & Clay Miner. 17: 5962.CrossRefGoogle Scholar
Mehra, O. P., and Jackson, M. L. 1960. Iron oxide removal from soil and clays by a dithionite-citrate system buffered with sodium carbonate. Proc. 7th Natl. Conf. Clays & Clay Miner., 317327.Google Scholar
Muller, J-P., Ildefonse, P., and Calas, G. 1990. Paramagnetic defect centers in hydrothermal kaolinite from an altered tuff in the Nopal uranium deposit, Chihuahua, Mexico. Clays & Clay Miner. 38: 600608.Google Scholar
Muller, J-P., and Calas, G. 1993. Genetic significance of paramagnetic centers in kaolinites. In Kaolin Genesis and Utilization. Murray, H. H., Bundy, W. M., and Harvey, C. C., eds. Boulder, Colorado: Clay Minerals Society of America, 261289.Google Scholar
Murray, H. H., 1988. Kaolin minerals: their genesis and occurences. In Hydrous Phyllosilicates, Reviews in Mineralogy 19. Bailey, S. W., ed. Washington, D.C.: Mineralogical Society of America, 6790.CrossRefGoogle Scholar
Nahon, D., 1986. Evolution of iron crusts in tropical landscapes. In Rates of chemical Weathering of Rocks and Minerals. Colman, S. M., and Dethier, D. P., eds. London: Academic Press, 168187.Google Scholar
Rengasamy, P., 1976. Substitution of iron and titanium in kaolinites. Clays & Clay Miner. 24: 265266.CrossRefGoogle Scholar
Sayin, M., and Jackson, M. L. 1975. Anatase and rutile determination in kaolinite deposit. Clays & Clay Miner. 23: 437443.Google Scholar
Schwertmann, U., 1966. Inhibitory effect of soil organic matter on the crystallization of amorphous ferric hydroxide. Nature 212: 645646.Google Scholar
Strens, R. G. J., and Wood, B. J. 1979. Diffuse reflectance spectra and optical properties of some iron and titanium oxides and oxyhydroxides. Mineral. Mag. 43: 347354.Google Scholar
Temple, A. K., 1966. Alteration of ilmenite. Econ. Geol. 61: 695714.Google Scholar
Tossell, J. A., Vaughan, D. J., and Johnson, K. H. 1974. The electronic structure of rutile, wustite and hematite from molecular orbital calculations. Amer. Mineral. 59: 319334.Google Scholar
Van Olphen, H., and Fripiat, J. J. 1978. Data Handbook For Clay Materials and Other Non-Metallic Minerals. Oxford: Pergamon Press, 344 pp.Google Scholar
Walker, J. L., Sherman, G. D., and Katsura, T. 1969. The iron and titanium minerals in the titaniferous ferruginous latosols of Hawaii. Pacif. Sci. 23: 291304.Google Scholar
Weaver, C. E., 1976. The nature of TiO2 in kaolinite. Clays & Clay Miner. 24: 215218.Google Scholar
Wendlandt, W. W. M., and Hecht, H. G. 1966. Reflectance Spectroscopy. New York: Interscience Publishers, Wiley and Sons, 298 pp.Google Scholar
Waychunas, G. A., 1991. Crystal chemistry of oxides and oxyhydroxides. In Oxides minerals: petrologic and magnetic significance, Reviews in Mineralogy 25. Lindsley, D. H., ed. Washington, D.C.: Mineralogical Society of America, 1168.Google Scholar
Wort, M. J., and Jones, M. P. 1980. X-ray diffraction and magnetic studies of altered ilmenite and pseudorutile. Mineral. Mag. 43: 659663.Google Scholar