Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-25T03:14:16.587Z Has data issue: false hasContentIssue false

Sorption of Heavy-Metal Cations by Al and Zr-Hydroxy-Intercalated and Pillared Bentonite

Published online by Cambridge University Press:  28 February 2024

Winnie Matthes
Affiliation:
Laboratory for Clay Mineralogy, Division of Geotechnical Engineering, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
Fritz T. Madsen
Affiliation:
Laboratory for Clay Mineralogy, Division of Geotechnical Engineering, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
Guenther Kahr
Affiliation:
Laboratory for Clay Mineralogy, Division of Geotechnical Engineering, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The sorption of Cd, Cu, Pb, and Zn ions by Na-rich bentonite, Al and Zr-pillared Na-rich bentonite (Al-MX80, Zr-MX80), the uncalcined hydroxy-intercalated precursors (HAl, HZr-MX80), and commercial Al-pillared bentonite EXM 534 was investigated. Experiments were conducted in ultrapure water and artificial leachate with varying pH. The experiments were performed over periods to 30 wk. Sorption characteristics were described with one and two-site Langmuir isotherms. The non-exchangeable quantities of heavy metals were determined by fusion of the sorbents after ion exchange with ammonium acetate.

The sorption of Cd, Cu, Pb, and Zn by bentonite was dominated by cation exchange. In artificial leachate, the sorption was reduced due to competition with alkali and alkaline-earth cations. The sorption of Cu, Zn, and Pb at pH 4.9 and Cd at pH 6.9 by Al and Zr-hydroxy-intercalated and pillared MX80 was governed also by cation exchange. In contrast, the sorbed quantities of Zn at pH 6.9 exceeded the cation exchange capacity (CEC) of HAl, HZr, Al, Zr-MX80, and EXM 534 and were partially non-exchangeable. The increase of the sorption of Zn with pH and its independence of the ionic strength of the solution at neutral pH suggest a complexation of Zn ions to surface hydroxyl groups of the intercalated Al and Zr-polyhydroxo cations and pillars. This complexation is the dominating sorption mechanism. Removal of dissolved Zn from solution with time is attributed to surface precipitation. Al-hydroxy and pillared bentonites are considered potential sorbents of Zn ions from neutral pH aqueous solutions, such as waste waters and leachates.

Type
Research Article
Copyright
Copyright © 1999, The Clay Minerals Society

References

Arneth, J.D. Milde, G. Kerndorff, H. Schleyer, R. and Baccini, P., 1989 Waste deposit influences on ground water quality as a tool for waste type and site selection for final storage quality The Landfill-Reactor and Final Storage. Lecture Notes in Earth Sciences, Volume 20 Berlin Springer Verlag 399416.Google Scholar
Asher, L.E. and Bar-Yosef, B., 1982 Effects of pyrophosphate, EDTA, and DTPA on zinc sorption by montmorillonite Journal of the Soil Science Society of America 46 271276 10.2136/sssaj1982.03615995004600020011x.CrossRefGoogle Scholar
Bartley, G.J.J., 1988 Zirconium pillared clays Catalysis Today 2 233241 10.1016/0920-5861(88)85006-5.CrossRefGoogle Scholar
Bartley, G.J.J. and Burch, R., 1985 Zr-containing pillared interlayer clays. III. Influence of method of preparation on the thermal and hydrothermal stability Applied Catalysis 19 175185 10.1016/S0166-9834(00)82679-2.CrossRefGoogle Scholar
Brunauer, S. Emmett, P.H. and Teller, E., 1938 Adsorption of gases in multimolecular layers Journal of the American Chemical Society 62 17231732 10.1021/ja01864a025.CrossRefGoogle Scholar
Brune, M. Ramke, H.G. Collins, H.J. and Hanert, H.H., 1991 Incrustation processes in drainage systems of sanitary landfills Proceedings of the Third International Landfill Symposium Cagliari, Italy CISA-Environmental Sanitary Engineering Centre 9991035.Google Scholar
Burch, R. and Warburton, C.I., 1986 Zr-containing pillared interlayer clays Journal of Catalysis 97 503510 10.1016/0021-9517(86)90021-7.CrossRefGoogle Scholar
Christensen, T.H., 1984 Cadmium soil sorption at low concentrations: I. Effects of time, cadmium load, pH and calcium Water, Air & Soil Pollution 21 105114 10.1007/BF00163616.CrossRefGoogle Scholar
Clearfield, A. and Vaughan, P.A., 1956 The crystal structure of zirconyl chloride octahydrate and zirconyl bromide octahydrate Acta Crystallographica 9 555558 10.1107/S0365110X56001558.CrossRefGoogle Scholar
Comets, J.M. and Kevan, L., 1993 Coordination of cupric ions to water and to metal oxide pillars in copper (II)-doped Al13- and Zr4-pillared montmorillonite clays studied by electron spin echo modulation spectroscopy Journal of Physical Chemistry 97 1200412007 10.1021/j100148a027.CrossRefGoogle Scholar
Farfan-Torres, E.M. Sham, E. and Grange, P., 1992 Pillared clays: Preparation and characterization of zirconium pillared montmorillonite Catalysis Today 15 515526 10.1016/0920-5861(92)85016-F.CrossRefGoogle Scholar
Farley, K.J. Dzombak, D.A. and Morel, M.M., 1985 A surface precipitation model for the sorption of cations on metal oxides Journal of Colloid and Interface Science 106 226242 10.1016/0021-9797(85)90400-X.CrossRefGoogle Scholar
Furrer, G., Ludwig, C. and Schindler, P.W. (1992) On the chemistry of the Al13 polymer—I. Acid-base properties. Journal of Colloid and Interface Science, 149, 56—67.Google Scholar
Gil, A. and Montes, M., 1994 Analysis of the microporosity in pillared clays Langmuir 10 291297 10.1021/la00013a043.CrossRefGoogle Scholar
Griffin, R.A. and Au, A.K., 1977 Lead adsorption by montmorillonite using a competitive Langmuir equation Journal of the Soil Science Society of America 41 880886 10.2136/sssaj1977.03615995004100050013x.CrossRefGoogle Scholar
Harkins, W.D. and Jura, G., 1943 An adsorption method for the determination of the area of a solid without the assumption of a molecular area and the area occupied by N2 molecules on the surface of solids Journal of Chemical Physics 11 431432 10.1063/1.1723871.CrossRefGoogle Scholar
Hermanns, R. (1993) Sicherung von Altlasten mit vertikalen mineralischen Barrieresystemen im Zweiphasen-Schlitzwandverfahren. Veröffentlichungen des IGT der ETH Zuerich 204, Verlag der Fachvereine Zuerich, Zuerich.Google Scholar
Hohl, H. and Stumm, W., 1976 Interaction of Pb2+ with hydrous γ-Al2O3 Journal of Colloid and Interface Science 55 281288 10.1016/0021-9797(76)90035-7.CrossRefGoogle Scholar
Inskeep, W.P. and Baham, J., 1983 Competitive complexation of Cd(II) and Cu(II) by water soluble organic ligands and Na-montmorillonite Journal of the Soil Science Society of America 47 11091115 10.2136/sssaj1983.03615995004700060010x.CrossRefGoogle Scholar
Johansson, G. Lundgren, G. Sillen, L.G. and Soderquist, R., 1960 On the crystal structure of some basic aluminum salts Acta Chemica Scandinavica 14 771773 10.3891/acta.chem.scand.14-0771.CrossRefGoogle Scholar
Jones, W., 1988 The structure and properties of pillared clays Catalysis Today 2 357367 10.1016/0920-5861(88)85015-6.CrossRefGoogle Scholar
Keizer, P. Bruggenwert, M.G.M., Bolt, G. De Boodt, M.F. Hayes, M.H.B. and McBride, M.B., 1991 Adsorption of heavy metals by clay-aluminum hydroxide complexes Interactions at the Soil Colloid-Soil Solution Interface Dordrecht Kluwer Academic Publishers 177205 10.1007/978-94-017-1909-4_6.CrossRefGoogle Scholar
Kinniburg, D.G., 1986 General purpose adsorption isotherms Environmental Science and Technology 20 895904 10.1021/es00151a008.CrossRefGoogle Scholar
Kinniburg, D.G. Jackson, M.L., Anderson, M.A. and Rubin, A.J., 1981 Cation adsorption by hydrous metal oxides and clay Adsorption of Inorganics at Solid-Liquid Interfaces Ann Arbor, Michigan Ann Arbor Science Publishers 91160.Google Scholar
Kinniburg, D.G. Jackson, M.L. and Syers, J.K., 1976 Adsorption of alkaline earth, transition and heavy metal cations by hydrous oxide gels of iron and aluminum Journal of the Soil Science Society of America 40 796799 10.2136/sssaj1976.03615995004000050047x.CrossRefGoogle Scholar
Kloprogge, J.T., 1992 Pillared clays: Preparation and characterization of clay minerals and aluminum-based pillaring agents Utrecht, The Netherlands Faculteit Aardwetenschappen der Rijksuniversiteit Utrecht.Google Scholar
Kloprogge, J.T., 1998 Synthesis of smectites and porous pillared clay catalysts: A review Journal of Porous Materials 5 541 10.1023/A:1009625913781.CrossRefGoogle Scholar
Kukkadapu, R.K. and Kevan, L., 1988 Synthesis and electron spin resonance studies of copper-doped alumina-pillared montmorillonite clay Journal of Physical Chemistry 92 60736078 10.1021/j100332a045.CrossRefGoogle Scholar
Lahav, N. Shani, U. and Shabtai, J., 1978 Cross-linked smectites. I. Synthesisand properties of hydroxy-aluminum montmorillonite Clays and Clay Minerals 26 107115 10.1346/CCMN.1978.0260205.CrossRefGoogle Scholar
Lahodny-Sarc, O. and Khalaf, H., 1994 Some considerations on the influence of source clay material and synthesis conditions on the properties of Al-pillared clays Applied Clay Science 8 405415 10.1016/0169-1317(94)90036-1.CrossRefGoogle Scholar
Langmuir, I., 1918 The adsorption of gases on plane surfaces of glass, mica and platinum Journal of the American Chemical Society 40 13611403 10.1021/ja02242a004.CrossRefGoogle Scholar
Lothenbach, B., 1996 Gentle soil remediation: Immobilization of heavy metals by aluminium and montmorillonite Compounds Zurich, Switzerland Swiss Federal Institute of Technology Zurich.Google Scholar
MacKenzie, R.C., 1951 A micromethod for determination of cation exchange capacity of clay Journal of Colloid Science 6 219222.Google Scholar
Matthes, W. and Madsen, F.T., 1996 Pillared Clays und ihre Anwendbarkeit im Deponiebau DTTG — Berichte der Deutschen Ton- und Tonmineralgruppe 4 190197.Google Scholar
McBride, M.B., Bolt, G.H. De Boodt, M.F. Hayes, M.H.B. and McBride, M.B., 1991 Processes of heavy and transition metal sorption by soil minerals Interactions at the Soil Colloid-Soil Solution Interface The Netherlands Kluwer Academic Publishers 149175 10.1007/978-94-017-1909-4_5.CrossRefGoogle Scholar
McBride, M.B., 1994 Environmental Chemistry of Soils New York Oxford University Press 63120.Google Scholar
McBride, M.B. Pinnavaia, T.J. and Mortland, M.M., 1975 Electron spin resonance studies of cation orientation in restricted water layers on phyllosilicate (smectite) surfaces Journal of Physical Chemistry 79 24302435 10.1021/j100589a018.CrossRefGoogle Scholar
Merian, E., 1991 Metals and Their Compounds in the Environment New York VCH, Weinheim.Google Scholar
Mueller-Vonmoos, M. and Kahr, G., 1983 Mineralogische Untersuchungen von Wyoming Bentonit MX-80 und Montigel Zuerich Technischer Bericht 83–12, Institut für Grundbau und Bodenmechanik, ETH Zuerich.Google Scholar
Occelli, M.L. and Tindwa, R.M., 1983 Physicochemical properties of montmorillonite interlayered with cationic oxoaluminum pillars Clays and Clay Minerals 31 2228 10.1346/CCMN.1983.0310104.CrossRefGoogle Scholar
Pinnavaia, T.J., 1983 Intercalated clay catalysts Science 220 365371 10.1126/science.220.4595.365.CrossRefGoogle ScholarPubMed
Pinnavaia, TJ T M-S Landau, S.D.L. and Raythatha, R.H., 1984 On the pillaring and delamination of smectite clay catalysts by polyoxo cations of aluminum Journal of Molecular Catalysis 27 195212 10.1016/0304-5102(84)85080-4.CrossRefGoogle Scholar
Plee, D. Borg, F. Gatineau, L. and Fripiat, J.J., 1985 High resolution solid state 27Al and 29Si nuclear magnetic resonance study of pillared clays Journal of the American Chemical Society 107 23622369 10.1021/ja00294a028.CrossRefGoogle Scholar
Poncelet, G. Schutz, A. and Setton, R., 1986 Pillared montmorillonite and beidellite. Acidity and catalytic properties Chemical Reactions in Organic and Inorganic Constrained Systems Dordrecht D. Reidel Publishing Company 165178 10.1007/978-94-009-4582-1_13.CrossRefGoogle Scholar
Rowe, R.K. Quigley, R.M. and Booker, J.R., 1995 Clayey barrier systems for waste disposal facilities London E&FN Spon 10.4324/9780203302064.CrossRefGoogle Scholar
Schindler, P.W., Anderson, M.A. and Rubin, A.J., 1981 Surface complexes at oxide-water interfaces Adsorption of Inorganics at Solid-Liquid Interfaces Ann Arbor, Michigan Ann Arbor Science Publishers 151.Google Scholar
Schindler, P.W. Fuerst, B. Dick, R. and Wolf, P.U., 1976 Ligand properties of surface silanol groups—I. Surface complex formation with Fe3+, Cu2+, Cd2+ and Pb2+ Journal of Colloid and Interface Science 55 469475 10.1016/0021-9797(76)90057-6.CrossRefGoogle Scholar
Schmitt, H.W. and Sticher, H., 1986 Prediction of heavy metal contents and displacement in soils Zeitschrift fuer Pflanzenernaehrung und Bodenkunde 149 157171 10.1002/jpln.19861490203.CrossRefGoogle Scholar
Schoenherr, S. Goerz, H. Gessner, W. and Bertram, R., 1983 Protolysevorgaenge in waessrigen Aluminiumchloridloesungen Zeitschrift fuer Chemie 23 429434 10.1002/zfch.19830231202.CrossRefGoogle Scholar
Smith, R.E. and Martell, A.E., 1976 Critical Stability Constants. Volume 4: Inorganic Complexes New York Plenum Press 10.1007/978-1-4757-5506-0.CrossRefGoogle Scholar
Stadler, M. and Schindler, P.W., 1993 Modeling of H+ and Cu2+ adsorption on calcium-montmorillonite Clays and Clay Minerals 41 288296 10.1346/CCMN.1993.0410303.CrossRefGoogle Scholar
Stumm, W. Kummert, R. and Sigg, L., 1980 A ligand exchange model for the adsorption of inorganic and organic ligands at hydrous oxide interfaces Croatica Chemica Acta 53 291312.Google Scholar
Tokarz, M. and Shabtai, J., 1985 Cross-linked smectites. Preparation and properties of hydroxyaluminum-pillared Ce- and La-montmorillonites and fluorinated NH4 +-montmorillonites Clays and Clay Minerals 33 8998 10.1346/CCMN.1985.0330202.CrossRefGoogle Scholar
Van Bladel, R. Haien, H. and Cloos, P., 1993 Calcium-zinc and calcium-cadmium exchange in suspensions of various types of clays Clay Minerals 28 3338 10.1180/claymin.1993.028.1.04.CrossRefGoogle Scholar
Vaughan, D.E.W., 1988 Pillared clays—a historical perspective Catalysis Today 2 187198 10.1016/0920-5861(88)85002-8.CrossRefGoogle Scholar
Vaughan, D.E.W. Lussier, R.J. and Rees, L.V.C., 1980 Preparation of molecular sieves based on pillared interlayered clays (PILC) Proceedings of the 5th International Conference on Zeolites London Heyden Press 94101.Google Scholar
Vaughan, D.E.W. Lussier, R.J. and Magee, J.S., 1979 Pillared interlayered clay materials useful as catalysts and sorbents US Patent 4,176,090 .Google Scholar
Yamanaka, S. and Brindley, G.W., 1979 High surface area solids obtained by reaction of montmorillonite with zirconyl chloride Clays and Clay Minerals 27 119124 10.1346/CCMN.1979.0270207.CrossRefGoogle Scholar
Zhu, H.Y. Gao, W.H. and Vansant, E.E., 1995 The porosity and water adsorption of alumina pillared montmorillonite Journal of Colloid and Interface Science 171 377385 10.1006/jcis.1995.1193.CrossRefGoogle Scholar