Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-23T12:20:05.140Z Has data issue: false hasContentIssue false

Some Colloidal Properties of Beidellite: Comparison with Low and High Charge Montmorillonites

Published online by Cambridge University Press:  28 February 2024

Frederic Hetzel
Affiliation:
University of California, Department of Soil Science, 108 Hilgard Hall, Berkeley, California 94720
Harvey E. Doner
Affiliation:
University of California, Department of Soil Science, 108 Hilgard Hall, Berkeley, California 94720
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Recent evidence of the occurrence of beidellite in many soils around the world necessitates a better understanding of the role of charge location on the colloidal behavior of this smectite as compared to the more frequently studied montmorillonites. Clay suspension stability and sorption of an organic polymer, two properties sensitive to surface charge characteristics, were selected to examine the differences in colloidal behaviors of these smectites. The Otay montmorillonite was shown to have a higher charge than either the beidellite or the SWy-1 montmorillonite. Even though structural formulae resulted in a higher permanent charge for the beidellite as compared to the SWy-1, effective charge of these two smectites is the same. The pH dependency of the critical coagulation concentration of the smectites could not be explained based only on edge charge considerations, and it is proposed that tetrahedral charge location enhances the pH effect on the CCC. Decreased poly(vinyl) alcohol sorption with either increasing surface charge or tetrahedral charge location was observed. Both parameters affect the ease of replacement of water molecules by PVA on the surface of smectites.

Type
Research Article
Copyright
Copyright © 1993, The Clay Minerals Society

References

Anderson, S. J. and Sposito, G., 1991 Cesium-adsorption method for measuring accessible structural surface charge Soil Sci. Soc. Amer. J. 55 15691576 10.2136/sssaj1991.03615995005500060011x.CrossRefGoogle Scholar
Aragoneses, F. J. and Garcia-Gonzalez, M. T., 1991 High-charge smectite in Spanish “Raña” soils Clays & Clay Minerals 39 211218 10.1346/CCMN.1991.0390213.CrossRefGoogle Scholar
Arora, H. S. and Coleman, N. T., 1979 The influence of electrolyte concentration on flocculation of clay suspensions Soil Sci. 127 134139 10.1097/00010694-197903000-00002.CrossRefGoogle Scholar
Badraoui, M., Bloom, P. R. and Rust, R. H., 1987 Occurrence of high-charge beidellite in a vertic haplaquoll of Northwestern Minnesota Soil Sci. Soc. Amer. J. 51 813818 10.2136/sssaj1987.03615995005100030044x.CrossRefGoogle Scholar
Badraoui, M. and Bloom, P. R., 1990 Iron-rich high-charge beidellite in vertisols and mollisols of the high Chaouia region of Morocco Soil Sci. Soc. Amer. J. 54 267274 10.2136/sssaj1990.03615995005400010043x.CrossRefGoogle Scholar
Burchill, S., Hayes, M. H. B., Banin, A. and Kafkafi, U., 1980 Adsorption of poly(vinyl alcohol) by clay minerals Agrochemicals in Soils Oxford Pergamon 109121 10.1016/B978-0-08-025914-7.50015-3.CrossRefGoogle Scholar
Carter, D. L., Mortland, M. M., Kemper, W. D. and Klute, A., 1986 Specific surface Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods 2 Wisconsin Madison 413423.Google Scholar
De Boodt, M. F., Boodt, M. F. de Hayes, M H B and Herbillon, A., 1990 Applications of polymeric substances as physical soil conditioners Soil Colloids and Their Association in Aggregates New York Plenum Press 517556 10.1007/978-1-4899-2611-1_19.CrossRefGoogle Scholar
Doner, H. E. and Mortland, M. M., 1971 Charge location as a factor in the dehydration of 2:1 clay minerals Soil Sci. Soc. Amer. Proc. 35 360362 10.2136/sssaj1971.03615995003500020049x.CrossRefGoogle Scholar
Eltantawy, I. M. and Arnold, P. W., 1973 Reappraisal of the ethylene glycol mono-ethyl ether (EGME) method for surface area estimations of clays J. Soil Sci. 24 232238 10.1111/j.1365-2389.1973.tb00759.x.CrossRefGoogle Scholar
Frey, E. and Lagaly, G., 1979 Selective coagulation in mixed colloidal suspensions J. Colloid and Interf. Sci. 70 4655 10.1016/0021-9797(79)90006-7.CrossRefGoogle Scholar
Goldberg, S. and Forster, H. S., 1990 Flocculation of reference clays and arid-zone soil clays Soil Sci. Soc. Amer. J. 54 714718 10.2136/sssaj1990.03615995005400030014x.CrossRefGoogle Scholar
Goldberg, S. and Glaubig, R. A., 1987 Effect of saturating cation, pH, and aluminum and iron oxide on the flocculation of kaolinite and montmorillonite Clays & Clay Minerals 35 220227 10.1346/CCMN.1987.0350308.CrossRefGoogle Scholar
Greene-Kelly, R., 1953 The identification of montmoril-lonoids in clays J. Soil Sci. 4 233237 10.1111/j.1365-2389.1953.tb00657.x.CrossRefGoogle Scholar
Greenland, D. J., 1963 Adsorption of polyvinyl alcohols by montmorillonite J. Colloid Sci. 18 647664 10.1016/0095-8522(63)90058-8.CrossRefGoogle Scholar
Gu, B. and Doner, H. E., 1990 Adsorption of hydroxy-Al polycations and destabilization of illite and montmorillonite suspensions Clays & Clay Minerals 38 493500 10.1346/CCMN.1990.0380505.CrossRefGoogle Scholar
Gu, B. and Doner, H. E., 1992 The microstructure of dilute clay and humic acid suspensions revealed by freeze-fracture electron microscopy Clays & Clay Minerals 40 246250 10.1346/CCMN.1992.0400215.CrossRefGoogle Scholar
Harward, M. E., Carstea, D. D. and Sayegh, A. H., 1969 Properties of vermiculites and smectites: Expansion and collapse Clays & Clay Minerals 16 437447 10.1346/CCMN.1969.0160605.CrossRefGoogle Scholar
Hesterberg, D. and Page, A. L., 1990 Critical coagulation concentrations of sodium and potassium illite as affected by pH Soil Sci. Soc. Amer. J. 54 735739 10.2136/sssaj1990.03615995005400030018x.CrossRefGoogle Scholar
Jackson, M. L., 1979 Soil Chemical Analysis—Advanced Course 2 Wisconsin Madison.Google Scholar
Jackson, M. L., Lim, C. H., Zelazny, L. W. and Klute, A., 1986 Oxides, hydroxides, and aluminosilicates Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods 2 Wisconsin Madison 101149.Google Scholar
Kerr, P. F., Hamilton, P. K., and Pill, R. J., (1950) Analytical data on reference clay minerals: Amer. Petrol. Inst. Project 49, Clay Mineral Standards, Prelim. Rept. 7, 160 pp.Google Scholar
Lim, C. H. and Jackson, M. L., 1984 Mineralogy of soils developed in periglacial deposits of Southwestern Canada Soil Sci. Soc. Amer. J. 48 684687 10.2136/sssaj1984.03615995004800030043x.CrossRefGoogle Scholar
Lim, C. H. and Jackson, M. L., 1986 Expandable phyllo-silicate reactions with lithium on heating Clays & Clay Minerals 34 346352 10.1346/CCMN.1986.0340316.CrossRefGoogle Scholar
Malla, P. B., and Douglas, L. A., (1987) Identification of expanding layer silicates: Layer charge vs. expansion properties: in Proc. Int. Clay Conf., Denver, Schultz, L. G., Olphen, H. van, and Mumpton, F. A., eds., 277283.Google Scholar
Nadeau, P. H., Farmer, V. C., McHardy, W. J. and Bain, D. C., 1985 Compositional variations of the Unterrupsroth beidellite Amer. Mineral. 70 10041010.Google Scholar
Norrish, K., (1973) Forces between clay particles: in Proc. Int. Clay Conf., Madrid, Serratosa, J. M., and Sanchez, A., eds., 375383.Google Scholar
Olis, A. C., Malla, P. B. and Douglas, L. A., 1990 The rapid estimation of the layer charges of 2:1 expanding clays from a single alkylammonium ion expansion Clay Miner. 25 3950 10.1180/claymin.1990.025.1.05.CrossRefGoogle Scholar
Painuli, D. K. and Pagliai, M., 1990 Effect of polyvinyl alcohol, dextran and humic acid on some physical properties of a clay and loam soil. I. Cracking and aggregate stability Agrochim. 34 117130.Google Scholar
Quirk, J. P., Emerson, W. W., Bond, R. D. and Dexter, A. R., 1978 Some physico-chemical aspects of soil structural stability: a review Modification of Soil Structure Chichester, United Kingdom Wiley 316.Google Scholar
Robert, M., Hardy, M. and Elsass, F., 1991 Crystallo-chemistry, properties and organization of soil clays derived from major sedimentary rocks in France Clay Miner. 26 409420 10.1180/claymin.1991.026.3.09.CrossRefGoogle Scholar
Schultz, L. G., 1969 Lithium and potassium adsorption, dehydroxilation temperature, and structural water content of aluminous smectites Clays & Clay Minerals 17 115149 10.1346/CCMN.1969.0170302.CrossRefGoogle Scholar
Senkayi, A. L., Dixon, J. B., Hossner, L. R. and Kippenber-ger, L. A., 1985 Layer charge evaluation of expandable clays by an alkyl ammonium method Soil Sci. Soc. Amer. J. 49 10541060 10.2136/sssaj1985.03615995004900040052x.CrossRefGoogle Scholar
Sposito, G., 1984 The Surface Chemistry of Soils New York Oxford University Press.Google Scholar
Sposito, G. and Le Vesque, C. S., 1985 Sodium-calcium-magnesium exchange on Silver Hill illite Soil Sci. Soc. Amer. J. 49 11531159 10.2136/sssaj1985.03615995004900050016x.CrossRefGoogle Scholar
Suhr, N. H. and Ingamells, C. O., 1966 Solution techniques for analysis of silicates Anal. Chem. 38 730734 10.1021/ac60238a015.CrossRefGoogle Scholar
Suquet, H., de la Calle, C. and Pezerat, H., 1975 Swelling and structural organization of saponite Clays & Clay Minerals 23 19 10.1346/CCMN.1975.0230101.CrossRefGoogle Scholar
Swartzen-AUen, S. L. and Matijevic, E., 1976 Colloid and surface properties of clay suspensions. III. Stability of mont-morillonite and kaolinite J. Colloid Inter. Sci. 56 159167 10.1016/0021-9797(76)90158-2.CrossRefGoogle Scholar
Theng, B. K. G., 1979 Formation and Properties of Clay-polymer Complexes Amsterdam Elsevier Scientific.Google Scholar
Van Olphen, H., 1977 An Introduction to Clay Colloid Chemistry New York Wiley-Interscience.Google Scholar
Weaver, C. E. and Pollard, L. D., 1973 Smectite The Chemistry of Clay Minerals Amsterdam Elsevier Scientific.Google Scholar
Whittig, L. D., Allardice, W. R. and Klute, A., 1986 X-ray diffraction techniques Methods of Soil Analysis, Part 1. Physical and Mineralogical Methods 2 Wisconsin Madison 5586.Google Scholar
Wilson, M.J., (1987) Soil smectites and related interstratified minerals: Recent developments: in Proc. Int. Clay Conf., Denver, Schultz, L. G., Olphen, H. van, and Mumpton, F. A., eds., 167173.Google Scholar