Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-22T07:32:46.692Z Has data issue: false hasContentIssue false

Solid State Reaction of Sodium Carbonate with Montmorillonite at 550°C

Published online by Cambridge University Press:  02 April 2024

I. M. Natale
Affiliation:
Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
A. K. Helmy
Affiliation:
Universidad Nacional del Sur, 8000 Bahía Blanca, Argentina
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The isothermal solid state reactions of Na2CO3 and other salts at 550°C with montmorillonite and with 1:1 mixtures of montmorillonite-illite and montmorillonite-chlorite were investigated. At a concentration of 20 wt. %, Na2CO3 caused the complete destruction of the X-ray powder diffraction (XRD) pattern of montmorillonite alone and in mixtures with other clays. Less deterioration of the XRD pattern was found for NaOH, NaF, K2CO3, and Li2CO3. NaCl, Na2SO4, Na3PO4, MgCO3, and CuCO3 had no effect on the XRD traces of montmorillonite. The time dependence of the Na2CO3-montmorillonite interaction at 550°C suggested that the reaction is diffusion controlled in three dimensions, i.e., diffusion was directed from the surface of the particle towards its center.

Type
Research Article
Copyright
Copyright © 1989, The Clay Minerals Society

References

Beretka, J. and Brown, T., 1983 Effect of particle size on the kinetics of reaction between magnesium and aluminum oxides J. Amer. Cer. Soc. 66 383388.CrossRefGoogle Scholar
Bradley, W. F. and Grim, R. E., 1951 High temperature thermal effects of clay and related materials A mer. Mineral. 36 182201.Google Scholar
Brindley, G. W., Sharp, J. H., Patterson, J. H. and Nashari Achar, B. N., 1967 Kinetics and mechanisms of dehydroxylation processes. Temperature and vapor pressure dependence of dehydroxylation of kaolinite Amer. Mineral. 52 201211.Google Scholar
Calvet, R., Chaussidon, J. and Heller, L., 1969 Diffusion des cations compensateurs dans la montmorillonite aux faibles hydratations Proc. Int. Clay Conf. Jerusalem Israel Univ. Press 635647.Google Scholar
Earley, J.W. Milne, I.H. and McVeagh, W.J., 1953 Thermal, dehydration and X-ray studies on montmorillonite Amer. Mineral. 38 770783.Google Scholar
Hancock, J. D. and Sharp, J. H., 1972 Method of comparing solid state kinetic data and its application to the decomposition of kaolinite, brucite, and BaCO3 J. Amer. Cer. Soc. 55 7477.CrossRefGoogle Scholar
Helmy, A. K., Peinemann, N. and Andreoli, C. Y., 1984 Use of the 02,11 X-ray diffraction reflections to identify clays Clays & Clay Minerals 32 231232.CrossRefGoogle Scholar
Jonas, E. C., 1955 The reversible dehydroxylation of clay minerals Clays and Clay Minerals, Proc 3rd 6673.CrossRefGoogle Scholar
Martin-Vivaldi, J. L. M. MacEwan, D. M. C. Rodriguez-Gallego, M., Rosenqvist, T.h. and Graff-Petersen, P., 1963 Effects of thermal treatment on the c-axial dimension of montmorillonite as a function of the exchangeable cations Proc. Int. Clay Conf. Oxford Pergamon Press 4551.Google Scholar
Natale, I. M. and Mandolesi, M. E., 1985 Caracterización de un mineral montmorillonitico de la provincia de Rio Negro Asoc. Geol. Arg. Rev. 40 290292.Google Scholar
Peinemann, N., Ferreiro, E. A. and Helmy, A. K., 1972 Estudio mineralogico de una montmorillonita de Cerro Bandera (Provincia del Neuquen, R. Argentina) Asoc. Geol. Arg. Rev. 27 399405.Google Scholar
Taylor, H. F. W., 1962 Homogeneous and inhomogeneous mechanisms in the dehydroxylation of minerals Clay Min. Bull. 5 4555.CrossRefGoogle Scholar