Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-23T10:47:44.815Z Has data issue: false hasContentIssue false

Smectite-Illite Transition in Barbados Accretionary Wedge Sediments: Tem and Aem Evidence for Dissolution/Crystallization at Low Temperature

Published online by Cambridge University Press:  28 February 2024

Martine D. Buatier*
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
Donald R. Peacor
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
James R. O'Neil
Affiliation:
Department of Geological Sciences, The University of Michigan, Ann Arbor, Michigan 48109
*
1Present address: Université des Sciences et Techniques de Lille, Laboratoire de dynamique sédimentaire et structurale, 596555 Villeneuve d'Ascq Cedex, France.
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Sediments from depths to 670 m in the Barbados accretionary complex and transecting the décollement zone have been studied by transmission and analytical electron microscopy (TEM/AEM). The sediments consist of claystone and mudstone intercalated with layers of volcanic ash. Smectite comprises the bulk of the noncalcareous sediments and forms a continuous matrix enveloping sparse, irregular, large grains of illite, chlorite, kaolinite and mixed-layer illite/chlorite of detrital origin at all depths. The detrital origin of illite is implied by illite-smectite textural relations, well-ordered 2M polytypism, and a muscovite-like composition. K is the dominant interlayer cation in smectite at all depths, in contrast to the Na and Ca that are normally present in similar rocks.

Deeper samples associated with the décollement zone contain small (up to 100 Å thick) illite packets included within still-dominant subparallel layers of contiguous smectite. AEM analyses of these packets imply illite-like compositions. Selected area electron diffraction (SAED) patterns show that this illite is the 1Md polytype. Packets display step-like terminations like those seen in illite of hydrothermal origin. The data collectively demonstrate that smectite transforms progressively to illite via a dissolution-recrystallization process within a depleting matrix of smectite, and not by a mechanism of layer replacement. This illite seems to form at depths as shallow as 500 m and temperatures of 20°-30°C, which is in marked contrast to the much higher temperature conditions normally assumed for this transformation. This implies that the high water/rock ratios associated with the décollement zone are significant in promoting reaction.

Type
Research Article
Copyright
Copyright © 1992, The Clay Minerals Society

References

Ahn, J. H. and Peacor, D. R., 1986 Transmission and analytical electron microscopy of the smectite-to-illite transition Clays & Clay Minerals 34 165179 10.1346/CCMN.1986.0340207.Google Scholar
Ahn, J. H. and Peacor, D. R., 1986 Transmission electron microscope data for rectorite: Implication for the origin and structure of “fundamental particles” Clays & Clay Minerals 34 180186 10.1346/CCMN.1986.0340208.Google Scholar
Ahn, J. H. and Peacor, D. R., 1989 Illite/smectite from Gulf coast shales: A reappraisal of transmission electron microscope images Clays & Clay Minerals 37 542546 10.1346/CCMN.1989.0370606.Google Scholar
Amouric, M., 1987 Growth and deformation defects in phyllosilicates as seen by HRTEM Acta Cryst 43 5763 10.1107/S0108768187098306.CrossRefGoogle Scholar
Baxter Grubb, S. M., Peacor, D. R. and Yiang, W. T., 1991 TEM observations of polytypism in illite Clays & Clay Minerals 5 540550.CrossRefGoogle Scholar
Blanc, G., Gieskes, J. M., Vrolijk, P. J., Mascle, A., Moore, C. J., Taylor, E., Alvarez, F., Andrieff, P., Barnes, R., Beck, C., Behrmann, J., Brown, K., Clark, M., Dolan, J., Fisher, A., Hounslow, M., McClellan, P., Moran, K., Ogawa, Y. M., Sakai, T., Schoonmaker, J., Wilkens, R. and Williams, C., 1988 Advection de fluides intersticiels dans les séries sédimentaires du complexe d’accretion de la Barbade (Leg 110 ODP) Bull. Soc. Geol. France 8 453460.CrossRefGoogle Scholar
Bouysse, P., Westercamp, D. and Andreiff, P., 1990 The lesser Antilles island arc et al, Proc. ODP, Sci. Results 110 2944.Google Scholar
Buatier, M., Honnorez, J. and Ehret, G., 1989 Fesmectite-glauconite transition in hydrothermal green clays from the Galapagos spreading center Clays & Clay Minerals 37 532541 10.1346/CCMN.1989.0370605.CrossRefGoogle Scholar
Burst, J. F., 1969 Diagenesis of Gulf Coast clayey sediments and its possible relation to petroleum migration Bull. Amer. Assoc. Petrol. Geol 53 7393.Google Scholar
Capet, X., Chamley, H., Beck, C. and Holtzapffel, T., 1990 Clay mineralogy of sites 671 and 672, Barbados Ridge acretionary complex and Atlantic abyssal plain: Paleoenvironmental and diagenetic implications et al., Proc. ODP, Sci. Results 110 8596.Google Scholar
Clark, M. W., 1990 Cenozoic calcareous nannofossils from the Lesser Antilles forearc region and biostratigraphic summary of Leg 110 et al, Proc. ODP, Sci. Results 110 129137.Google Scholar
Clauer, N., O’Neil, J. R., Bonnot-Courtois, C. and Holtzapffel, T., 1990 Morphological, chemical and isotopic evidence for an early diagenetic evolution of detrital smectite in marine sediments Clays & Clay Minerals 38 3346 10.1346/CCMN.1990.0380105.CrossRefGoogle Scholar
Cliff, G. W. and Lorimer, G. W., 1975 The quantitative analysis of thin specimens J. Micros 103 203207 10.1111/j.1365-2818.1975.tb03895.x.CrossRefGoogle Scholar
Fisher, A. T. and Hounslow, M. W., 1990 Heat flow through the toe of the Barbados accretionary complex et al. Proc. ODP. Sci. Results 110 345360.Google Scholar
Freed, R. L. and Peacor, D. R., 1989 Variability in temperature of the smectite/illite reaction in Gulf coast sediments Clay Miner 24 171180 10.1180/claymin.1989.024.2.05.CrossRefGoogle Scholar
Freed, R. L., and Peacor, D. R., (in press) Diagenesis and the formation of authigenic illiterich I/S crystals in the Gulf coast shales: TEM study of clay separates: J. Sed. Petrol.Google Scholar
Gieskes, J. M., Vrolijk, P. and Blanc, G., 1990 Hydrogeo-chemistry of the northern Barbados accretionary transect ODP Leg 110 J.Geophys. Res 95 88098818 10.1029/JB095iB06p08809.CrossRefGoogle Scholar
Hoffman, J. and Hower, J., 1979 Clay mineral assemblages as low-grade metamorphic geothermometers: Application to the thrust faulted disturbed belt of Montana, U.S.A.: in Aspects of Diagenesis Soc. Econ. Paleontol. Mineral. Spec. Publ 26 5579.Google Scholar
Hower, J., Eslinger, E. V., Hower, M. E. and Perry, E. A., 1976 Mechanism of burial metamorphism of argillaceous sediments: 1. Mineralogical and chemical evidence Geol. Soc. Amer. Bull 87 725737 10.1130/0016-7606(1976)87<725:MOBMOA>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Huang, W. L., Bishop, A. M. and Brown, R. W., 1986 The effect of the fluid/rock ratio on feldspar dissolution and illite formation under reservoir conditions Clay Miner 21 581601 10.1180/claymin.1986.021.4.10.CrossRefGoogle Scholar
Inoue, A., Watanabe, T., Kohyama, N. and Brusewitz, A. M., 1990 Characterization of illitization of smectite in bentonite beds at Kinnekulle, Sweden Clays & Clay Minerals 38 241249 10.1346/CCMN.1990.0380302.CrossRefGoogle Scholar
Jiang, W. T. and Peacor, D. R., 1990 Transmission and analytical electron microscopic study of mixed-layer illite/ smectite formed as an apparent replacement product of diagenetic illite Clays & Clay Minerals 38 449468 10.1346/CCMN.1990.0380501.CrossRefGoogle Scholar
Julius, C. and Pons, J. C., 1972 Contribution a l’étude d’une mangrove dans la région de Vauclin (Martinique) Bull. Inst. Geol. Bassin Aquitaine 12 181186.Google Scholar
Kniper, R. J., 1981 The interaction of deformation and metamorphism in slates Tectonophysics 78 249292 10.1016/0040-1951(81)90016-0.CrossRefGoogle Scholar
Leclerc-Vanhoeve, M. and Stephan, J. F., 1985 Evolution géodynamique des Caraibes dans le système points chauds Geodynamique des Caraibes 1 2134.Google Scholar
Lee, J. H. and Peacor, D. R., 1985 Ordered 1:1 interstratification of illite and chlorite: A transmission and analytical electron microscopy study Clays & Clay Minerals 33 463467 10.1346/CCMN.1985.0330514.CrossRefGoogle Scholar
Lee, J. H., Peacor, D. R., Lewis, D. D. and Wintsch, R. P., 1984 Chlorite-illite/muscovite interlayered and inter-stratified crystals: A TEM/STEM study Contr. Miner. Petrol 88 372385 10.1007/BF00376762.CrossRefGoogle Scholar
Lorimer, G. W., Cliff, G. and Wenk, H. R., 1976 Analytical electron microscopy of minerals Electron Microscopy in Mineralogy New York Springer-Verlag 506519 10.1007/978-3-642-66196-9_38.CrossRefGoogle Scholar
McDowell, D. S., 1986 Composition and structural state of coexisting feldspars, Salton Sea geothermal state Min-eral. Mag 50 7584 10.1180/minmag.1986.050.355.11.CrossRefGoogle Scholar
Moore, J. C., and Mascle, A., 1990 et al. () Proc. ODP, Sci. Results 110, College Station, Texas (Ocean Drilling Program).Google Scholar
Nadeau, P. H., Wilson, M. J., McHardy, W. J. and Tait, J. M., 1985 The conversion of smectite to illite during diagenesis: Evidence from some illite clays from bentonites and sandstones Mineral. Mag 49 393400 10.1180/minmag.1985.049.352.10.CrossRefGoogle Scholar
Page, R. and Wenk, H. R., 1979 Phyllosilicates alteration of plagioclase studied by transmission electron microscopy Geology 7 393397 10.1130/0091-7613(1979)7<393:PAOPSB>2.0.CO;2.2.0.CO;2>CrossRefGoogle Scholar
Perry, E. A., Gieskes, J. M. and Lawrence, J. R., 1976 Mg, Ca O18VO16 exchange in the sediment-pore water system, Hole 149 DSDP Geochim. Cosmochim. Acta 40 413423 10.1016/0016-7037(76)90006-5.CrossRefGoogle Scholar
Ransom, B. and Helgeson, H. C., 1989 On the correlation of expandability with mineralogy and layering in mixed layering in mixed-layer clays Clays & Clay Minerals 37 189191 10.1346/CCMN.1989.0370212.CrossRefGoogle Scholar
Shau, Y. H., Feather, M. E., Essene, E. J. and Peacor, D. R., 1991 Genesis and solvus relation of submicroscopically intergrown paragonite and phengite in a blueschist from northern California Contrib. Miner, and Petrol 106 367378 10.1007/BF00324564.CrossRefGoogle Scholar
Taylor, E. and Leonard, J., 1990 Sediment consolidation and permeability at the Barbados forearc et al, Proc. ODP, Sci. Results 110 289308.Google Scholar
Tribble, J., 1990 Clay diagenesis in the Barbados accretionary complex: Potential impact on hydrology and subduction dynamics Proc. ODP, Sci. Results 110 97110.Google Scholar
van der Pluijm, B. A., Lee, J. H. and Peacor, D. R., 1988 Analytical electron microscopy and the problem of potassium diffusion Clays & Clay Minerals 36 498504 10.1346/CCMN.1988.0360603.CrossRefGoogle Scholar
Whitney, G., 1990 Role of water in the smectite-to-illite reaction Clays & Clay Minerals 38 343350 10.1346/CCMN.1990.0380402.CrossRefGoogle Scholar
Yau, Y. C., Peacor, D. R., Lewis, D. D. and Wintsch, R. P., 1986 Evidence for syntectonic crystallization for the mudstone-to-slate transition at Lehigh Gap, Pennsylvania, U.S.A. J. Struct. Geol 8 767780 10.1016/0191-8141(86)90024-6.Google Scholar
Yau, Y. C., Peacor, D. R. and McDowell, S. D., 1987 Smectite-to-illite reactions in Salton Sea shales: A transmission and analytical electron microscopy study J. Sed. Petrol 57 335342.Google Scholar