Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-22T23:35:36.308Z Has data issue: false hasContentIssue false

Silicic acid magadiite as a host for n-alkyldiamine guest molecules and features related to the thermodynamics of intercalation

Published online by Cambridge University Press:  01 January 2024

Thaís R. Macedo
Affiliation:
Instituto de Química,, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo, Brazil
Giovanni C. Petrucelli
Affiliation:
Instituto de Química,, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo, Brazil
Claudio Airoldi*
Affiliation:
Instituto de Química,, Universidade Estadual de Campinas, Caixa Postal 6154, 13084-971 Campinas, São Paulo, Brazil
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Somen-alkyldiamines with thegeneral formulae H2N(CH2)nNH2 (n = 2–5) were intercalated into the layered silicic acid magadiite, from aqueous solution, causing an increase in the original interlayer distance of 1172 pm. The synthetic magadiite and all intercalated compounds were characterized by elemental analysis, infrared vibrational spectroscopy, X-ray diffractometry, 29Si nuclear magnetic resonance in the solid state, thermogravimetry, scanning electron microscopy, surface area and porosity. The intercalation was followed through a batch-wise method at 298±1 K and gave the maximum amounts 3.70, 2.80, 1.75 and 1.18 mmol g−1, for n varying from 2 to 5, respectively. The well characterized magadiite was calorimetrically titrated in a heterogeneous medium, to obtain the thermodynamic data of intercalation at the solid/liquid interface. Linear correlations were obtained for the number of moles intercalated (Nf), th einterlamellar distance (d) and the specific enthalpy (Δinth) values of the interactive process as a function of the number of C atoms of the aliphatic organic chains (nC) for n-alkyldiamine: Nf = (5.36±0.25) − (0.86±0.07)nC, d = (1406.6±1.9) + (20.9±0.5)nC and Δinth = (5.96±0.25) + (0.06±0.01)nC. The basic N guest atom/silanol acidic center interactions inside the host nanospace gallery gave exothermic enthalpies, positive entropies and negative Gibbs free energy values. This set of data suggests the spontaneity of these intercalation reactions.

Type
Research Article
Copyright
Copyright © 2007, The Clay Minerals Society

References

Alberti, G. and Bein, T., (1996) Comprehensive Supramolecular Chemistry 7 151156 Chapter 5.Google Scholar
Almond, G.G. Harris, R.K. and Franklin, K.R., (1997) A structural consideration of kanemite, octosilicate, magadiite and kenyaite Journal of Materials Chemistry 7 681687 10.1039/a606856a.CrossRefGoogle Scholar
Airoldi, C. Nunes, L.M. and Farias, R.F., (2000) The intercalation of n-alkyldiamines into crystalline layered titanate Materials Research Bulletin 35 20812090 10.1016/S0025-5408(00)00426-8.CrossRefGoogle Scholar
Babel, S. and Kurniawan, T.A., (2003) Low-cost adsorbents for heavy metals uptake from contaminated water: a review Journal of Harzardous Materials 97 219243 10.1016/S0304-3894(02)00263-7.CrossRefGoogle ScholarPubMed
Beneke, K. and Lagaly, G., (1975) Magadiite and H-magadiite. 1. Sodium magadiite and some of its derivatives American Mineralogist 60 642649.Google Scholar
Beneke, K. and Lagaly, G., (1975) Magadiite and H-magadiite. 2. H-magadiite and its intercalation compounds compounds American Mineralogist 60 650658.Google Scholar
Capkova, P. and Schenk, H., (2003) Host-guest complementarity and crystal packing of intercalated layered structures Journal of Inclusion Phenomena and Macrocyclic Chemistry 47 110 10.1023/B:JIPH.0000003826.01697.42.CrossRefGoogle Scholar
Cheetham, A.K. Ferey, G. and Loiseau, T., (1999) Open-framework inorganic materials Angewandte Chemie International Edition 38 32693292 10.1002/(SICI)1521-3773(19991115)38:22<3268::AID-ANIE3268>3.0.CO;2-U.3.0.CO;2-U>CrossRefGoogle ScholarPubMed
Clearfield, A., (1998) Metal phosphonate chemistry Progress in Inorganic Chemistry 47 371510.Google Scholar
Danjo, M. Hayashi, A. Nakayama, H. Kimura, Y. Shimizu, T. Mizugushi, Y. Yagita, Y. Tsuhako, M. Nariai, H. and Motooka, I., (1999) Structureand organic gas-adsorption properties of some polyamine intercalated alpha-zirconium phosphates Bulletin of the Chemical Society of Japan 72 20792084 10.1246/bcsj.72.2079.CrossRefGoogle Scholar
Eypert-Blaison, C. Sauzéat, E. Pelletier, M. Michot, L.J. Villiéras, F. and Humbert, B., (2001) Hydration mechanisms and swelling behavior of Na-magadiite Chemistry of Materials 13 14801486 10.1021/cm001130+.CrossRefGoogle Scholar
Eypert-Blaison, C. Humbert, B. Michot, L.J. Pelletier, M. Sauzéat, E. and Villiéras, F., (2001) Structural role of hydration water in Na- and H-magadiite: A spectroscopic study Chemistry of Materials 13 44394446 10.1021/cm001205+.CrossRefGoogle Scholar
Feng, F.X. Balkus, K.J. Jr., (2003) Synthesis of kenyaite, magadiite and octosilicate using poly(ethylene glycol) as a template Journal of Porous Materials 10 515 10.1023/A:1024078332686.CrossRefGoogle Scholar
Feng, F.X. Balkus, K.J. Jr., (2004) Recrystallization of layered silicates to silicalite-1 Microporous and Mesoporous Materials 69 8596 10.1016/j.micromeso.2003.12.024.CrossRefGoogle Scholar
Fonseca, M.G. and Airoldi, C., (2000) Mercaptopropyl magnesium phyllosilicate — thermodynamic data on the interaction with divalent cations in aqueous solution Thermochimica Acta 359 19 10.1016/S0040-6031(00)00490-1.CrossRefGoogle Scholar
Fonseca, M.G. and Airoldi, C., (2000) New layered inorganic-organic nanocomposites containing n-propylmercapto copper phyllosilicates Journal of Materials Chemistry 10 14571463 10.1039/b001556n.CrossRefGoogle Scholar
Fonseca, M.G. and Airoldi, C., (2001) New amino-inorganic hybrids from talc silylation and copper adsorption properties Materials Research Bulletin 36 277287 10.1016/S0025-5408(00)00470-0.CrossRefGoogle Scholar
Fonseca, M.G. Silva, C.R. Barone, J.S. and Airoldi, C., (2000) Layered hybrid nickel phyllosilicates and reactivity of the gallery space Journal of Materials Chemistry 10 789795 10.1039/a907804e.CrossRefGoogle Scholar
Fonseca, M.G. Simoni, J.A. and Airoldi, C., (2001) Some thermodynamic data about amino chrysotile derivatives with nickel and cobalt cation interactions in aqueous solution Thermochimica Acta 369 1724 10.1016/S0040-6031(00)00750-4.CrossRefGoogle Scholar
Fonseca, M.G. Silva Filho, E.C. Machado, RSA Jr. Arakaki, L.N.H. Espinola, J.G.P. and Airoldi, C., (2004) Zinc phyllosilicates containing amino pendant groups Journal of Solid State Chemistry 177 23162322 10.1016/j.jssc.2004.02.026.CrossRefGoogle Scholar
Fonseca, M.G. Oliveira, M.M. Arakaki, L.N.H. Espinola, J.G.P. and Airoldi, C., (2005) Natural vermiculite as an exchanger support for heavy cations in aqueous solution Journal of Colloid and Interface Science 285 5055 10.1016/j.jcis.2004.11.031.CrossRefGoogle ScholarPubMed
Fujii, K. Hayashi, S. and Kodama, H., (2003) Synthesis of an alkylammonium/magnesium phyllosilicate hybrid nanocomposite consisting of a smectite-like layer and organosiloxane layers Chemistry of Materials 15 11891197 10.1021/cm0209665.CrossRefGoogle Scholar
Guillot, M. Richard-Plouet, M. and Vilminot, S., (2002) Structural characterisations of a lamellar organic-inorganic nickel silicate obtained by hydrothermal synthesis from nickel acetate and (aminopropyl)triethoxysilane Journal of Materials Chemistry 12 851857 10.1039/b110101c.CrossRefGoogle Scholar
Komori, Y. Miyoshi, M. Hayashi, S. Sugahara, Y. and Kuroda, K., (2000) Characterization of silanol groups in protonated magadiite by H-1 and H-2 solid-state nuclear magnetic resonance Clays and Clay Minerals 48 632637 10.1346/CCMN.2000.0480604.CrossRefGoogle Scholar
Kwon, O.Y. and Park, K.Y., (2004) Synthesis of layered silicates from sodium silicate solution Bulletin of the Korean Chemical Society 25 2526 10.5012/bkcs.2004.25.1.025.Google Scholar
Kwon, O.Y. Jeong, S.Y. Suh, J.K. Ryu, B.H. and Lee, J.M., (1996) Effects of organic solvents in the intercalation of octylamineinto H-magadiite Journal of Colloid and Interface Science 177 677680 10.1006/jcis.1996.0083.CrossRefGoogle Scholar
Langmuir, I., (1918) The adsorption of gases on plane surfaces of glass, mica and platinum Journal of the American Chemical Society 40 13611403 10.1021/ja02242a004.CrossRefGoogle Scholar
Lima, C.B.A. and Airoldi, C., (2002) Layered crystalline calcium phenylphosphonate — synthesis, characterization and n-alkylmonoamine intercalation Solid State Science 4 13211329 10.1016/S1293-2558(02)00009-2.CrossRefGoogle Scholar
Lima, C.B.A. and Airoldi, C., (2004) Topotactic exchange and intercalation of calcium phosphate Solid State Science 6 12451250 10.1016/j.solidstatesciences.2004.06.009.CrossRefGoogle Scholar
Minet, J. Abramson, S. Bresson, B. Sanchez, C. Montouillout, V. and Lequeux, N., (2004) New layered calcium organosilicate hybrids with covalently linked organic functionalities Chemistry of Materials 16 39553962 10.1021/cm034967o.CrossRefGoogle Scholar
Miyamoto, N. Kawai, R. Kuroda, K. and Ogawa, M., (2001) Intercalation of a cationic cyanine dye into the layer silicate magadiite Applied Clay Science 19 3946 10.1016/S0169-1317(01)00054-0.CrossRefGoogle Scholar
Nakayama, H. Hayashi, A. Eguchi, T. Nakamura, N. and Tsuhako, M., (2002) Unusual adsorption mechanism for carboxylic acid gases by polyamine-intercalated alpha—zirconium phosphate Journal of Materials Chemistry 12 30933099 10.1039/B201295M.CrossRefGoogle Scholar
Okutomo, S. Kuroda, K. and Ogawa, M., (1999) Preparation and characterization of silylated-magadiites Applied Clay Science 15 253264 10.1016/S0169-1317(99)00010-1.CrossRefGoogle Scholar
Richard-Plouet, M. Vilminot, S. and Guillot, M., (2004) Synthetic transition metal phyllosilicates and organic-inorganic related phases New Journal of Chemistry 28 10731082 10.1039/b316089k.CrossRefGoogle Scholar
Ruiz, V.S.O. and Airoldi, C., (2004) Thermochemical data for n-alkylmonoamine intercalation into crystalline lamellar zirconium phenylphosphonate Thermochimica Acta 420 7378 10.1016/j.tca.2003.10.029.CrossRefGoogle Scholar
Ruiz-Hitzky, E. Casal, B. Aranda, P. and Galvan, J.C., (2001) Inorganic-organic nanocomposite materials based on macrocyclic compounds Reviews in Inorganic Chemistry 21 125159 10.1515/REVIC.2001.21.1-2.125.CrossRefGoogle Scholar
Schwieger, W. Heyer, W. and Bergk, K.H., (1988) The hydrothermal magadiite crystallization. 1. The kinetic of thecrystallization — possibilities of their description Zeitschrift für Anorganische und Allgemeine Chemie 559 191200 10.1002/zaac.19885590122.CrossRefGoogle Scholar
Shindachi, I. Hanaki, H. Sasai, R. Shichi, T. Yui, T. and Takagi, K., (2004) The effect of layered sodium-magadiite on the photochromic reversibility of diarylethene immobilized on its surfaces Chemistry Letters 33 11161117 10.1246/cl.2004.1116.CrossRefGoogle Scholar
Wang, Z. and Pinnavaia, T.J., (1998) Hybrid organic-inorganic nanocomposites: Exfoliation of magadiite nanolayers in an elastomeric epoxy polymer Journal of Materials Chemistry 10 18201826 10.1021/cm970784o.CrossRefGoogle Scholar
Wang, Z. and Pinnavaia, T.J., (2003) Intercalation of poly (propyleneoxide) amines (Jeffamines) in synthetic layered silicas derived from ilerite, magadiite, and kenyaite Journal of Materials Chemistry 13 21272131 10.1039/b306167a.CrossRefGoogle Scholar