Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-23T02:25:02.891Z Has data issue: false hasContentIssue false

Sepiolite-Palygorskite: A Continuous Polysomatic Series

Published online by Cambridge University Press:  01 January 2024

Mercedes Suárez*
Affiliation:
Departamento de Geología, Universidad de Salamanca, Plaza de la Merced s/n, Salamanca 37008, Spain
Emilia García-Romero
Affiliation:
Departamento de Cristalografía y Mineralogía, Facultad de Geología, Universidad Complutense de Madrid, Avd. José Antonio Novais s/n, E-28040 Madrid, Spain Instituto de Geociencias (IGEO), (Universidad Complutense de Madrid—Consejo Superior de Investigaciones Científicas), Avd. José Antonio Novais s/n, E-28040 Madrid, Spain
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

A compositional gap between sepiolite and palygorskite has long been accepted even though they have similar structures, but recent studies found that such a gap does not exist and that the compositional series is continuous between them. If this is true, intergrowths between these two minerals should exist. The purpose of the present study was to demonstrate the existence of sepiolite-palygorskite intergrowths in all possible proportions, in order to establish the compositional links between ideal sepiolite and ideal palygorskite and to define the compositional limits of these two minerals. Sepiolite and palygorskite have similar structures but different chemical compositions: sepiolite is the most trioctahedral and magnesic extreme, while palygorskite is dioctahedral with Al and Mg in its octahedral sheet. The existence of all intermediate compositions between these two pure extremes has led to the definition of the intermediate minerals, Al-sepiolite and Mg-palygorskite, which can have similar chemical composition. The structural relations between the different minerals of the palygorskite—sepiolite series were studied here by powder X-ray diffraction (XRD), and continuous variation in the chemical composition is explained by the existence of intergrowths of sepiolite and palygorskite polysomes forming a continuous polysomatic series. The existence of intergrowths by mixtures of polysomes in modulated structures can be considered in the same way that the mixed-layer minerals in layered structures are considered. The continuous polysomatic series of sepiolite-palygorskite can be expressed by the general formula: [Si12Mg8O30(OH)4(OH2)4]y∙[Si8O20(Mg2Fe2)x(Mg2Al2)(1-x)(OH)2(OH2)4](1-y)·nH2O, where sepiolite and palygorskite are the end-members. They and xvalues can be calculated using a ternary plot with the oxide contents of the main octahedral cations (Al2O3, Fe2O3, and MgO). The proposed model, which is based on the intergrowth of sepiolite and palygorskite polysomes, explains both the variability in the chemical composition and the compositional limit for the identification of these minerals by X-ray diffraction.

Type
Article
Copyright
Copyright © Clay Minerals Society 2013

References

Álvarez, A. Satarén, J. Esteban-Cubillo, E. and Aparicio, P., 2011 Current industrial applications of palygorskite and sepiolite Developments in Palygorskite-Sepiolite Research. A New Look at these Nanomaterials 3 281298.CrossRefGoogle Scholar
Aqrawi, A.A.M., 1993 Palygorskite in the recent fluvio-lacustrine and deltaic sediments of Southern Mesopotamia Clay Minerals 28 153159.CrossRefGoogle Scholar
Argast, S., 1989 Expandable sepiolite from nineties ridge, Indian Clay Clay Minerals 37 371376.CrossRefGoogle Scholar
Arranz, E. Lago, M. Bastida, J. Galés, C. Soriano, J. and Ubide, T., 2008 Hydrothermal macroscopy Fe-sepiolite from Oujda mounts (Middle Atlas, Eastern Morocco) Journal of African Earth Science 52 8188.CrossRefGoogle Scholar
Bradley, W. F., 1940 Structure of attapulgite American Mineralogist 25 405410.Google Scholar
Brauner, K. and Preisinger, A., 1956 Struktur und Entstehung des Sepioliths Tschermak’s Mineralogische und Petrographische Mitteilungen 6 120140.CrossRefGoogle Scholar
Chahi, A. Fritz, B. Duplay, J. Weber, F. and Lucas, J., 1997 Textural transition and genetic relationship between precursor stevensite and sepiolite in lacustrine sediments (Jbel Rhassoul, Morocco) Clays and Clay Minerals 45 378389.CrossRefGoogle Scholar
Chen, T. Xu, H. Lu, A. Xu, X. and Yue, S., 2004 Direct evidence of transformation from smetite to palygorskite: TEM Investigation Science in China: Earth Sciences 47 985994.Google Scholar
Chryssikos, G.D. Gionis, V. Kacandes, G.H. Stathopoulou, E.T. Suárez, M. García-Romero, E. and del Sánchez Rio, M., 2009 Octahedral cation analysis of palygorskite by near-infrared spectroscopy American Mineralogist 94 200203.CrossRefGoogle Scholar
Cetisli, H. and Gedikbey, T., 1960 Dissolution kinetics of sepiolite from Eskisehir (Turkey) in hydrochloric and nitric acids Clay Minerals 25 207215.CrossRefGoogle Scholar
Corma, A. Mifsud, A. and Sanz, E., 1987 Influence of the chemical composition and textural characteristics of palygorskite on the acid leaching of octahedral cations Clay Minerals 22 225232.CrossRefGoogle Scholar
Drits, V.A. and Aleksandrova, V.A., 1966 On the crystallographic nature of palygorskite Zapiski Vserossiiskogo Mineralogicheskogo Obshchestva 95 551560.Google Scholar
Ferraris, G. Makovicky, E. and Merlino, E., 2008 Application of modularity to structure description and modelling Crystallography of Modular Minerals UK Oxford University Press 227279.CrossRefGoogle Scholar
Galán, E. and Carretero, I., 1999 A new approach to compositional limits for sepiolite and palygorskite Clays and Clay Minerals 47 399409.CrossRefGoogle Scholar
Galán, E. and Pozo, M., 2011 Palygorskite and sepiolite deposits in continental environments. Description, genetic patterns and sedimentary settings Developments in Palygorskite-Sepiolite Research. A New Look at these Nanomaterials 3 125173.CrossRefGoogle Scholar
García-Romero, E. and Suárez, M., 2010 On the chemical composition of sepiolite and palygorskite Clays and Clay Minerals 58 120.CrossRefGoogle Scholar
García-Romero, E. Suárez, M. and Bustillo, A., 2004 Characteristics of a Mg-palygorskite in Miocene rocks, Madrid Basin (Spain) Clays and Clay Minerals 52 484494.CrossRefGoogle Scholar
García-Romero, E. Suárez, M. Oyarzun, R. López-García, J.A. and Regueiro, M., 2006 Fault-hosted palygorskite from the Serrata de Nijar deformation zone (SE Spain) Clays and Clay Minerals 54 324332.CrossRefGoogle Scholar
García-Romero, E. Suárez, M. Santaren, J. and Alvarez, A., 2007 Crystallochemical characterization of the palygorskite and sepiolite from the Allou Kagne deposit. Senegal Clays and Clay Minerals 56 606617.CrossRefGoogle Scholar
Gibbs, A.E. Hein, J.R. Lewis, S.D. and McCulloch, D.S., 1993 Hydrothermal palygorskite and ferromanganese mineralization at a central California margin fracture zone Marine Geology 115 4765.CrossRefGoogle Scholar
Gionis, V. Kacandes, I.D. Kastritis, I.D. and Chryssikos, G.D., 2006 On the structure of palygorskite by mid and near-infrared spectroscopy American Mineralogist 91 11251133.CrossRefGoogle Scholar
Gionis, V. Kacandes, I.D. Kastritis, I.D. and Chryssikos, G.D., 2007 Combined near-infrared and X-ray diffraction investigation of the octahedral sheet composition of palygorskite Clays and Clay Minerals 55 543553.CrossRefGoogle Scholar
Guggenheim, S. and Eggleton, R.A., 1987 Modulated 2:1 layer silicates: review, systematics, and predictions American Mineralogist 72 724738.Google Scholar
Guggenheim, S. and Krekeler, M.P.S., 2011 The structures and microtextures of the palygorskite-sepiolite group minerals Developments in Palygorskite-Sepiolite Research. A New Look at these Nanomaterials 3 333.CrossRefGoogle Scholar
Guggenheim, S. Adams, J.M. Bain, D.C. Bergaya, F. Brigatti, M.F. Drits, V.A. Formoso, M.L.L. Galán, E. Kogure, T. and Stanjek, H., 2006 Summary of recommendations of nomenclature committees relevant to clay mineralogy: report of the Association Internationale pour L’etude des Argiles (AIPEA) nomenclature committee for 2006 Clays and Clay Minerals 54 761772.CrossRefGoogle Scholar
Güven, N. Caillere, J.P.E. and Fripiat, J.J., 1992 The coordination of aluminum ions in the palygorskite structure Clays and Clay Minerals 40 457461.CrossRefGoogle Scholar
Huertas, F. Linares, J. and Martín Vivaldi, J. L., 1971 Minerales fibrosos de la arcilla en cuencas sedimentarias españolas. I. Cuenca del Tajo Boletín Geológico y Minero 87 534542.Google Scholar
Imai, N. Otsuka, R., Singer, A. and Galán, E., 1984 Sepiolite and palygorskite in Japan Palygorskite-Sepiolite: Occurrences, Gétnesis and Uses Elsevier, Amsterdam Developments in Sedimentology 211232.Google Scholar
Krekeler, M.P.S. Hammerly, E. Rakovan, Y. and Guggenheim, S., 2005 Microscopy studies of the palygorkite-to-smectite transformation Clays and Clay Minerals 53 9299.CrossRefGoogle Scholar
Martin Vivaldi, J.L. and Cano Ruíz, J., 1953 Contribución al estudio de la sepiolita (I) Caracterización y propiedades de sepiolitas españolas Anales de edafología y Fisiologia Vegetal XII-XI 829855.Google Scholar
Meunier, A., 2005.ClaysGoogle Scholar
McLean, S.A. Allen, B.I. and Craigh, J.R., 1972 The occurrence of sepiolite and attapulgite on the Southern High Plains Clays and Clay Minerals 20 143149.CrossRefGoogle Scholar
Millot, G., 1964 Geologie des Argiles Paris Masson & Cie.Google Scholar
Mondelli, C., Sanchez Del Rio, M., Gonzalez, M.A., Magazzu, A., Cavallari, C., Suarez, M., Garcia-Romero, E., and Romano, P. (2012) Role of water on formation and structural features of Maya blue. Journal of Physics: Conference Series, 340, art. no. 012109.Google Scholar
Moore, D.M. and Reynolds, RC Jr, 1989 X-ray Diffraction and the Identification and Analysis of Clay Minerals Oxford, UK Oxford University Press.Google Scholar
Nishimura, Y. Hori, Y. and Takahashi, H., 1972 Structural change and adsorption character of sepiolite by heat treatment Journal of the Clay Science Society of Japan 12 102108.Google Scholar
Paquet, H. Duplay, J. Valleron-Blanc, M.M. Millot, G., Schultz, L.G. Van Olphen, H. and Mumpton, F.A., 1987 Octahedral compositions of individual particles in smectite-palygorskite and smectite-sepiolite assemblages Proceedings of the International Clay Conference Bloomington, Indiana, USA The Clay Minerals Society 7377.Google Scholar
Post, J.L. and Crawford, S., 2007 Varied forms of palygorskite and sepiolite from different geologic systems Applied Clay Science 26 232244.CrossRefGoogle Scholar
Rogers, L.E.R. Quirk, J.P. and Norrish, K., 1956 Occurrence of an aluminium-sepiolite in a soil having unusual water relationships Soil Science 7 177184.CrossRefGoogle Scholar
del Sánchez Rio, M. Suárez, M. García Romero, E. Alianelli, L. Felici, R. Martinetto, P. Doorydhée, E. Reyes, C. INFM BEAR group, 2005 Mg-Kedge XANES of sepiolite and palygorskite Nuclear Instruments and Methods B 238 5560.CrossRefGoogle Scholar
del Sánchez Río, M. Martinetto, P. Reyes-Valerio, C. Dooryhée, E. and Suárez, M., 2006 Synthesis and acid-resistance of Maya blue pigment Archaeometry 48 115130.CrossRefGoogle Scholar
Sánchez del Río, M. Suárez, M. and García-Romero, E., 2009 The occurrence of palygorskite in the Yucatán Peninsula: Ethno-historic and archaeological contexts Archeometry 51 214230.CrossRefGoogle Scholar
del Sánchez Rio, M. Boccareli, E. Milanesio, M. Croce, G V Beek W Tsiantos, C. Chryssikos, G.D. Giones, V. Suárez, M. and García-Romero, E., 2009 A combined synchrotron powder diffraction and vibrational study of the thermal treatment of palygorskite-indigo to produce Maya blue Journal of Materials Science 44 55245536.CrossRefGoogle Scholar
del Sánchez Río, M. García-Romero, E. Suárez, M. da Silva, I. Fuentes Montero, L. and Martínez-Criado, G., 2011 Variability in sepiolite: diffraction studies American Mineralogist 94 200203.Google Scholar
del Sánchez Río, M. Doménech, A. Doménech-Carbó, M.T. de Vázquez Agredos Pascual, M.L. Suárez, M. and García-Romero, E., 2011 The Maya Blue Pigment Developments in Palygorskite-Sepiolite Research. A New Look at these Nanomaterials 3 453482.CrossRefGoogle Scholar
Starkey, H.C. Blackmon, P.D., Singer, A. and Galán, E., 1984 Sepiolite in Pleistocene Lake Tecopa, Inyo County, California Palygorskite-Sepiolite: Occurrences, Genesis and Uses Amsterdam Elsevier 137147.Google Scholar
Stathopoulou, E. Suárez, M. García-Romero, E. del Sánchez Rio, M. Kacandes, G. Giones, V. and Chryssikos, G.D., 2011 Trioctahedral entities in palygorskite: Near-infrared evidence for palygorskite/sepiolite polysomatism European Journal of Mineralogy 23 567576.CrossRefGoogle Scholar
Suárez, M. and García-Romero, E., 2006 FTR spectroscopic study of palygorskite: Influence of the composition of the octahedral sheet Applied Clay Science 31 154163.CrossRefGoogle Scholar
Suárez, M. and García-Romero, E., 2006 Macroscopic palygorskite from Lisbom Volcanic Complex European Journal of Mineralogy 18 119126.CrossRefGoogle Scholar
Suárez, M. and García-Romero, E., 2011 Advances in the crystal chemistry of sepiolite and palygorskite Developments in Palygorskite-Sepiolite Research. A New Look at these Nanomaterials 3 3355.CrossRefGoogle Scholar
Suárez, M. and García-Romero, E., 2012 Variablilty of the surface properties of sepiolite Applied Clay Science 67 7282.CrossRefGoogle Scholar
Suárez, M. García-Romero, E. del Sánchez Río, M. Martinetto, P. and Dooryhée, E., 2007 The effect of the octahedral cations on the dimensions of the palygorskite cell Clay Minerals 42 287297.CrossRefGoogle Scholar
Suárez, M. García-Romero, E. Chryssikos, G. Gionis, V. Kakandes, G. del Sánchez Río, M., Fiore, S. Belviso, C. and Giannosi, M.G., 2009.Structure and properties of palygorskite with excess Al XIV International Clay Conference, Italy 2009, abstracts volume IGoogle Scholar
Tauler, E. Proenza, J.A. Galí, S. Lewis, J.F. Labrador, M. García-Romero, E S M Longo, F. and Bloise, G., 2009 Ni-sepiolite-falcondoite in garnierite mineralization from Falcondo Ni-laterite deposit, Dominican Republic Clay Minera 44 435454.CrossRefGoogle Scholar
Teodorovich, G.I., 1961 Authigenic Minerals in Sedimentary Rocks New York Consultant Bureau.CrossRefGoogle Scholar
Torres-Ruíz, J. López-Galindo, A. González-López, J.M. and Delgado, A., 1994 Geochemistry of Spanish sepiolite-palygorskite deposits: Genetic considerations based on trace elements and isotopes Chemical Geology 112 221245.CrossRefGoogle Scholar
Weaver, C.E. and Polland, L.D., 1973 The Chemistry of Clay Minerals Amsterdam Developments in Sedimentology, E..Google Scholar
Zaaboub, N. Abdeljaouad, S. and López-Galíndo, A., 2005 Origin of fibrous clays in Tunisian Paleogene continental deposits Journal of African Earth Science 43 491504.CrossRefGoogle Scholar
Zheng, Z., Zheng, Z.L. and Song, J.X., 1997 The chemistry of palygorskite clays Palygorskites of China Beijing Geological Press 2645.Google Scholar