Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-10T09:34:08.856Z Has data issue: false hasContentIssue false

Review of Clay-Drug Hybrid Materials for Biomedical Applications: Administration Routes

Published online by Cambridge University Press:  01 January 2024

Myung Hun Kim
Affiliation:
Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea
Goeun Choi
Affiliation:
Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea
Ahmed Elzatahry
Affiliation:
Department of Chemistry, King Saud University, 2455 Riyadh 11451, Kingdom of Saudi Arabia Materials Science and Technology Program, College of Arts and Science, Qatar University, 2713, Doha, Qatar
Ajayan Vinu
Affiliation:
Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
Young Bin Choy
Affiliation:
Interdisciplinary Program in Bioengineering, College of Engineering, Seoul National University, Seoul, 08826, Republic of Korea Department of Biomedical Engineering, College of Medicine and Institute of Medical & Biological Engineering, Medical Research Center, Seoul National University, Seoul, 03080, Republic of Korea
Jin-Ho Choy*
Affiliation:
Center for Intelligent Nano-Bio Materials (CINBM), Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Republic of Korea Future Industries Institute, University of South Australia, Mawson Lakes, SA, Australia
*
*E-mail address of corresponding author: [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Focus here is placed on the pharmaceutical and biomedical applications of novel clay-drug hybrid materials categorized by methods of administration. Clay minerals have been used for many years as pharmaceutical and medicinal ingredients for therapeutic purposes. A number of studies have attempted to explore clay-drug hybrid materials for biomedical applications with desired functions, such as sustained release, increased solubility, enhanced adsorption, mucoadhesion, biocompatibility, targeting, etc. The present review attempts not only to summarize the state-of-the-art of clay-drug hybrid materials and their advantages, depending on the methods of administration, but also to deal with challenges and future perspectives of clay mineral-based hybrids for biomedical applications.

Type
Article
Copyright
Copyright © The Clay Minerals Society 2016

References

Abdel-Mohsen, M. Mohamed, H. and Wadood, H., 2001 Study of the effect of montmorillonite and florite on the dissociation constant, release and local anaesthetic activity of lidocaine STP Pharma Sciences 11 295300.Google Scholar
Abend, S. and Lagaly, G., 2000 Sol-gel transitions of sodium montmorillonite dispersions Applied Clay Science 16 201227.CrossRefGoogle Scholar
Aguzzi, C. Cerezo, P. Viseras, C. and Caramella, C., 2007 Use of clays as drug delivery systems: Possibilities and limitations Applied Clay Science 36 2236.CrossRefGoogle Scholar
Alavi, M. Totonchi, A. Okhovat, M.A. Motazedian, M. Rezaei, P. and Atefi, M., 2014 The effect of a new impregnated gauze containing bentonite and halloysite minerals on blood coagulation and wound healing Blood Coagulation & Fibrinolysis 25 856859.CrossRefGoogle ScholarPubMed
Albert, K. DeSante, K. Welch, R. and DiSanto, A., 1978 Pharmacokinetic evaluation of a drug interaction between kaolin pectin and clindamycin Journal of Pharmaceutical Sciences 67 15791582.CrossRefGoogle ScholarPubMed
Alestig, K. Trollfors, B. and Stenqvist, K., 1979 Acute nonspecific diarrhoea: Studies on the use of charcoal, kaolinpectin and diphenoxylate The Practitioner 222 859862.Google ScholarPubMed
Almeida, J. (2013) Identification of mechanisms of beneficial effects of dietary clays in pigs and chicks during an enteric infection. PhD thesis, University of Illinois at Urbana-Champaign, Illinois, USA, 103 pp.Google Scholar
Ambrogi, V. Nocchetti, M. and Latterini, L., 2014 Promethazine-montmorillonite inclusion complex to enhance drug photostability Langmuir 30 1461214620.CrossRefGoogle Scholar
Barral, S. Villa-García, M. Rendueles, M. and Diaz, M., 2008 Interactions between whey proteins and kaolinite surfaces Acta Materialia 56 27842790.CrossRefGoogle Scholar
Bergaya, F. and Lagaly, G. e., 2013 Handbook of Clay Science Amsterdam Elsevier.Google Scholar
Bhattarai, N. Gunn, J. and Zhang, M., 2010 Chitosan-based hydrogels for controlled, localized drug delivery Advanced Drug Delivery Reviews 62 8399.CrossRefGoogle ScholarPubMed
Bolger, R., 1995 Industrial minerals in pharmaceuticals Industrial Minerals 1 5263.Google Scholar
Bonina, F. Giannossi, M. Medici, L. Puglia, C. Summa, V. and Tateo, F., 2007 Adsorption of salicylic acid on bentonite and kaolin and release experiments Applied Clay Science 36 7785.CrossRefGoogle Scholar
Byrne, R. and Deasy, P., 2005 Use of porous aluminosilicate pellets for drug delivery Journal of Microencapsulation 22 423437.CrossRefGoogle ScholarPubMed
Cara, S. Carcangiu, G. Padalino, G. Palomba, M. and Tamanini, M., 2000 The bentonites in pelotherapy: Chemical, mineralogical and technological properties of materials from Sardinia deposits (Italy) Applied Clay Science 16 117124.CrossRefGoogle Scholar
Cara, S. Carcangiu, G. Padalino, G. Palomba, M. and Tamanini, M., 2000 The bentonites in pelotherapy: Thermal properties of clay pastes from Sardinia (Italy) Applied Clay Science 16 125132.CrossRefGoogle Scholar
Carretero, M.I., 2002 Clay minerals and their beneficial effects upon human health A review. Applied Clay Science 21 155163.CrossRefGoogle Scholar
Carretero, M.I. and Pozo, M., 2010 Clay and non-clay minerals in the pharmaceutical and cosmetic industries part II Active ingredients. Applied Clay Science 47 171181.CrossRefGoogle Scholar
Chang, F.Y. Lu, C.L. Chen, C.Y. and Luo, J.C., 2007 Efficacy of dioctahedral smectite in treating patients of diarrhea predominant irritable bowel syndrome Journal of Gastroenterology and Hepatology 22 22662272.CrossRefGoogle ScholarPubMed
Choy, J.-H. Kwak, S.-Y. Park, J.-S. Jeong, Y.-J. and Portier, J., 1999 Intercalative nanohybrids of nucleoside monophosphates and DNA in layered metal hydroxide Journal of the American Chemical Society 121 13991400.CrossRefGoogle Scholar
Choy, J.-H. Kwak, S.-Y. Jeong, Y.-J. and Park, J.-S., 2000 Inorganic layered double hydroxides as nonviral vectors Angewandte Chemie 39 40414045.3.0.CO;2-C>CrossRefGoogle ScholarPubMed
Choy, J.-H. Park, M. and Oh, J.-M., 2006 Bio-nanohybrids based on layered double hydroxide Current Nanoscience 2 275281.CrossRefGoogle Scholar
Choy, J.-H. Choi, S.-J. Oh, J.-M. and Park, T., 2007 Clay minerals and layered double hydroxides for novel biological applications Applied Clay Science 36 122132.CrossRefGoogle Scholar
Clark, K. Sarr, A. Grant, P. Phillips, T. and Woode, G., 1998 In vitro studies on the use of clay, clay minerals and charcoal to adsorb bovine rotavirus and bovine coronavirus Veterinary Microbiology 63 137146.CrossRefGoogle ScholarPubMed
Classen, J. Hoffmann, W. Meisner, C. Freitag, E.-M. Souchon, R. Feyerabend, T. Hehr, T. and Bamberg, M., 2003 941 prophylactic use of smectite (ST) significantly reduces the incidence of acute diarrhoea for patients undergoing radio-chemotherapy (RT-CX) for rectal cancer: Results of a double-blind phase III trial European Journal of Cancer Supplements 1 S283.CrossRefGoogle Scholar
Cypes, S.H. Saltzman, W.M. and Giannelis, E.P., 2003 Organosilicate-polymer drug delivery systems: Controlled release and enhanced mechanical properties Journal of Controlled Release 90 163169.CrossRefGoogle ScholarPubMed
Da Silva, G.R. Ayres, E. Orefice, R.L. Moura, S.A.L. Cara, D.C. Cunha, ADS Jr, 2009 Controlled release of dexamethasone acetate from biodegradable and biocompatible polyurethane and polyurethane nanocomposite Journal of Drug Targeting 17 374383.CrossRefGoogle ScholarPubMed
Da Silva, GR d S-C ^A Behar-Cohen, F. Ayres, E. and Orefice, R.L., 2011 Biodegradable polyurethane nanocomposites containing dexamethasone for ocular route Materials Science and Engineering: C 31 414422.CrossRefGoogle Scholar
de Sousa Rodrigues, L.A. Figueiras, A. Veiga, F. de Freitas, R.M. Nunes, L.C.C. da Silva Filho, E.C. and da Silva Leite, C.M., 2013 The systems containing clays and clay minerals from modified drug release: A review Colloids and Surfaces B: Biointerfaces 103 642651.CrossRefGoogle Scholar
Dobrozsi, D.J. (2003) Oral liquid mucoadhesive compositions. US Patent 6,638,521. Date Issued: 28 Oct.Google Scholar
Dong, Y. and Feng, S.-S., 2005 Poly (d, l-lactide-coglycolide)/montmorillonite nanoparticles for oral delivery of anticancer drugs Biomaterials 26 60686076.CrossRefGoogle Scholar
Dornelas, C.B. Silva, A.M. Dantas, C.B. Rodrigues, C.R. Coutinho, S.S. Sathler, P.C. Castro, H.C. Dias, L.R.S. Sousa, V.P. and Cabral, L.M., 2011 Preparation and evaluation of a new nano pharmaceutical excipients and drug delivery system based in polyvinylpyrrolidone and silicates Journal of Pharmacy & Pharmaceutical Sciences 14 1735.CrossRefGoogle Scholar
El-Nahhal, Y. Nir, S. Margulies, L. and Rubin, B., 1999 Reduction of photodegradation and volatilization of herbicides in organo-clay formulations Applied Clay Science 14 105119.CrossRefGoogle Scholar
Feng, S.-S. Mei, L. Anitha, P. Gan, C.W. and Zhou, W., 2009 Poly (lactide)-vitamin E derivative/montmorillonite nanoparticle formulations for the oral delivery of docetaxel Biomaterials 30 32973306.CrossRefGoogle ScholarPubMed
Ferrand, T. and Yvon, J., 1991 Thermal properties of clay pastes for pelotherapy Applied Clay Science 6 2138.CrossRefGoogle Scholar
Forsgren, J. Jámstorp, E. Bredenberg, S. Engqvist, H. and Strømme, M., 2010 A ceramic drug delivery vehicle for oral administration of highly potent opioids Journal of Pharmaceutical Sciences 99 219226.CrossRefGoogle ScholarPubMed
Górner, T. Gref, R. Michenot, D. Sommer, F. Tran, M. and Dellacherie, E., 1999 Lidocaine-loaded biodegradable nanospheres. I. Optimization of the drug incorporation into the polymer matrix Journal of Controlled Release 57 259268.CrossRefGoogle ScholarPubMed
Galán, E., 1996 Properties and applications of palygorskitesepiolite clays Clay Minerals 31 443454.CrossRefGoogle Scholar
Gamiz, E. Linares, J. and Delgado, R., 1992 Assessment of two Spanish bentonites for pharmaceutical uses Applied Clay Science 6 359368.CrossRefGoogle Scholar
Ghadiri, M. Chrzanowski, W. and Rohanizadeh, R., 2015 Biomedical applications of cationic clay minerals RSC Advances 5 2946729481.CrossRefGoogle Scholar
Gupte, A. and Bogardus, R. (1987) Dry aerosol foam containing zeolite, for use in cosmetics and pharmaceuticals. Europe Patent 247,608, Date Issued: 2 Dec.Google Scholar
Ha, J.U. and Xanthos, M., 2011 Drug release characteristics from nanoclay hybrids and their dispersions in organic polymers International Journal of Pharmaceutics 414 321331.CrossRefGoogle ScholarPubMed
Hsu, S.-h. Wang, M.-C. and Lin, J.-J., 2012 Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites Applied Clay Science 56 5362.CrossRefGoogle Scholar
Hua, S. Yang, H. Wang, W. and Wang, A., 2010 Controlled release of ofloxacin from chitosan-montmorillonite hydrogel Applied Clay Science 50 112117.CrossRefGoogle Scholar
Hubbell, J.A., 1996 Hydrogel systems for barriers and local drug delivery in the control of wound healing Journal of Controlled Release 39 305313.CrossRefGoogle Scholar
Ippoliti, C., 1998 Antidiarrheal agents for the management of treatment-related diarrhea in cancer patients American Journal of Health-System Pharmacy 55 15731580.CrossRefGoogle ScholarPubMed
Irmukhametova, G. Shaikhutdinov, E. Rakhmetullayeva, R. Yermukhambetova, B. Ishanova, A. Temirkhanova, G. and Mun, G., 2014 Nanostructured hydrogel dressings on base of crosslinked polyvinylpyrrolidone for biomedical application Advanced Materials Research 875 14671471.CrossRefGoogle Scholar
Isayev, A.I. and Palsule, S., 2011 Encyclopedia of Polymer Blends, Volume 2: Processing Weinheim, Germany Wiley-VCH.CrossRefGoogle Scholar
Ito, T. Sugafuji, T. Maruyama, M. Ohwa, Y. and Takahashi, T., 2001 Skin penetration by indomethacin is enhanced by use of an indomethacin/smectite complex Journal of Supramolecular Chemistry 1 217219.CrossRefGoogle Scholar
Jadhav, N. Paradkar, A. Salunkhe, N. Karade, R. and Mane, G., 2013 Talc: A versatile pharmaceutical excipient World Journal of Pharmacy and Pharmacutical Sciences 2 46394660.Google Scholar
Jin, X. Hu, X. Wang, Q. Wang, K. Yao, Q. Tang, G. and Chu, P.K., 2014 Multifunctional cationic polymer decorated and drug intercalated layered silicate (NLS) for early gastric cancer prevention Biomaterials 35 32983308.CrossRefGoogle ScholarPubMed
Jo, J.H., Lee, E.M., Han, Y.S., and Jung, G.Y. (2006) Transdermal composition comprising piroxicam-inorganic material complex and patch system comprising the same. US Patent 20,080,279,914. Date Issued: 13 Nov.Google Scholar
Joshi, G.V. Kevadiya, B.D. Patel, H.A. Bajaj, H.C. and Jasra, R.V., 2009 Montmorillonite as a drug delivery system: Intercalation and in vitro release of timolol maleate International Journal of Pharmaceutics 374 5357.CrossRefGoogle ScholarPubMed
Jung, H. Kim, H.-M. Choy, Y.B. Hwang, S.-J. and Choy, J- H, 2008 Itraconazole-laponite: Kinetics and mechanism of drug release Applied Clay Science 40 99107.CrossRefGoogle Scholar
Jung, H. Kim, H.-M. Choy, Y.B. Hwang, S.-J. and Choy, J.-H., 2008 Laponite-based nanohybrid for enhanced solubility and controlled release of itraconazole International Journal of Pharmaceutics 349 283290.CrossRefGoogle ScholarPubMed
Kelly, H. Deasy, P. Ziaka, E. and Claffey, N., 2004 Formulation and preliminary in vivo dog studies of a novel drug delivery system for the treatment of periodontitis International Journal of Pharmaceutics 274 167183.CrossRefGoogle ScholarPubMed
Kevadiya, B.D. Patel, T.A. Jhala, D.D. Thumbar, R.P. Brahmbhatt, H. Pandya, M.P. Rajkumar, S. Jena, P.K. Joshi, G.V. and Gadhia, P.K., 2012 Layered inorganic nanocomposites: A promising carrier for 5-fluorouracil (5-FU) European Journal of Pharmaceutics and Biopharmaceutics 81 91101.CrossRefGoogle ScholarPubMed
Khang, G. Rhee, J.M. Jeong, J.K. Lee, J.S. Kim, M.S. Cho, S.H. and Lee, H.B., 2003 Local drug delivery system using biodegradable polymers Macromolecular Research 11 207223.CrossRefGoogle Scholar
Kim, J. Kim, H.S. Lee, N. Kim, T. Kim, H. Yu, T. Song, I.C. Moon, W.K. and Hyeon, T., 2008 Multifunctional uniform nanoparticles composed of a magnetite nanocrystal core and a mesoporous silica shell for magnetic resonance and fluorescence imaging and for drug delivery Angewandte Chemie International Edition 47 84388441.CrossRefGoogle Scholar
Kim, M.H. Park, D.-H. Yang, J.-H. Choy, Y.B. and Choy, J.-H., 2013 Drug-inorganic-polymer nanohybrid for transdermal delivery International Journal of Pharmaceutics 444 120127.CrossRefGoogle ScholarPubMed
Krisanapiboon, A. Buranapanitkit, B. and Oungbho, K., 2006 Biocompatability of hydroxyapatite composite as a local drug delivery system Journal of Orthopaedic Surgery 14 315318.CrossRefGoogle ScholarPubMed
Lee, J.-H. Choi, G. Oh, Y.-J. Park, J.W. Choy, Y.B. Park, M.C. Yoon, Y.J. Lee, H.J. Chang, H.C. and Choy, J.-H., 2012 A nanohybrid system for taste masking of sildenafil International Journal of Nanomedicine 7 16351649.Google ScholarPubMed
Levis, S. and Deasy, P., 2003 Use of coated microtubular halloysite for the sustained release of diltiazem hydrochloride and propranolol hydrochloride International Journal of Pharmaceutics 253 145157.CrossRefGoogle ScholarPubMed
Li, Y. Li, H. Xiao, L. Zhou, L. Shentu, J. Zhang, X. and Fan, J., 2012 Hemostatic efficiency and wound healing properties of natural zeolite granules in a lethal rabbit model of complex groin injury Materials 5 25862596.CrossRefGoogle Scholar
Lim, E.K. Huh, Y.M. Yang, J. Lee, K. Suh, J.S. and Haam, S., 2011 pH triggered drug releasing magnetic nanoparticles for cancer therapy guided by molecular imaging by MRI Advanced Materials 23 24362442.CrossRefGoogle ScholarPubMed
Lin, F.-H. Lee, Y.-H. Jian, C.-H. Wong, J.-M. Shieh, M.-J. and Wang, C.-Y., 2002 A study of purified montmorillonite intercalated with 5-fluorouracil as drug carrier Biomaterials 23 19811987.CrossRefGoogle ScholarPubMed
López-Galindo, A. and Viseras, C., 2000 Pharmaceutical applications of fibrous clays (sepiolite and palygorskite) from some circum-Mediterranean deposits Proceedings of the 1st Latin American Clay Conference, Funchal, Madeira, Associacção Portuguesa de Argilas (APA) 258270.Google Scholar
López-Galindo, A. and Viseras, C., 2004 Pharmaceutical and cosmetic applications of clays Interface Science and Technology 1 267289.CrossRefGoogle Scholar
López-Galindo, A. Viseras, C. and Cerezo, P., 2007 Compositional, technical and safety specifications of clays to be used as pharmaceutical and cosmetic products Applied Clay Science 36 5163.CrossRefGoogle Scholar
Lvov, Y.M. Shchukin, D.G. Mohwald, H. and Price, R.R., 2008 Halloysite clay nanotubes for controlled release of protective agents ACS Nano 2 814820.CrossRefGoogle ScholarPubMed
Meng, N. Zhou, N.-L. Zhang, S.-Q. and Shen, J., 2009 Controlled release and antibacterial activity chlorhexidine acetate (ca) intercalated in montmorillonite International Journal of Pharmaceutics 382 4549.CrossRefGoogle ScholarPubMed
Mostafavi, A. Emami, J. Varshosaz, J. Davies, N.M. and Rezazadeh, M., 2011 Development of a prolonged-release gastroretentive tablet formulation of ciprofloxacin hydrochloride: Pharmacokinetic characterization in healthy human volunteers International Journal of Pharmaceutics 409 128136.CrossRefGoogle Scholar
Murray, H.H., 2000 Traditional and new applications for kaolin, smectite, and palygorskite: A general overview Applied Clay Science 17 207221.CrossRefGoogle Scholar
Noel, S.P. Courtney, H. Bumgardner, J.D. and Haggard, W.O., 2008 Chitosan films: A potential local drug delivery system for antibiotics Clinical Orthopaedics and Related Research 466 13771382.CrossRefGoogle ScholarPubMed
Oh, J.-M. Kwak, S.-Y. and Choy, J.-H., 2006 Intracrystalline structure of DNA molecules stabilized in the layered double hydroxide Journal of Physics and Chemistry of Solids 67 10281031.CrossRefGoogle Scholar
Oh, Y.J. Choi, G. Choy, Y.B. Park, J.W. Park, J.H. Lee, H.J. Yoon, Y.J. Chang, H.C. and Choy, J.H., 2013 Aripiprazole-montmorillonite: A new organic-inorganic nanohybrid material for biomedical appl ications Chemistry — A European Journal 19 48694875.CrossRefGoogle Scholar
Padula, C. Colombo, G. Nicoli, S. Catellani, P.L. Massimo, G. and Santi, P., 2003 Bioadhesive film for the transdermal delivery of lidocaine: In vitro and in vivo behavior Journal of Controlled Release 88 277285.CrossRefGoogle ScholarPubMed
Park, J.K. Choy, Y.B. Oh, J.-M. Kim, J.Y. Hwang, S.-J. and Choy, J.-H., 2008 Controlled release of donepezil intercalated in smectite clays International Journal of Pharmaceutics 359 198204.CrossRefGoogle Scholar
Pinto, Flávia Carmo Horta Silva-Cunha, Armando Pianetti, Gerson Antônio Ayres, Eliane Oréfice, Rodrigo Lambert and Da Silva, Gisele Rodrigues, 2011 Montmorillonite Clay-Based Polyurethane Nanocomposite As Local Triamcinolone Acetonide Delivery System Journal of Nanomaterials 2011 111.CrossRefGoogle Scholar
Poensin, D. Carpentier, P.H. Féchoz, C. and Gasparini, S., 2003 Effects of mud pack treatment on skin microcirculation Joint Bone Spine 70 367370.CrossRefGoogle ScholarPubMed
Pongjanyakul, T. and Suksri, H., 2009 Alginate-magnesium aluminum silicate films for buccal delivery of nicotine Colloids and Surfaces B: Biointerfaces 74 103113.CrossRefGoogle ScholarPubMed
Pongjanyakul, T. Khunawattanakul, W. and Puttipipatkhachorn, S., 2009 Physicochemical characterizations and release studies of nicotine-magnesium aluminum silicate complexes Applied Clay Science 44 242250.CrossRefGoogle Scholar
Raju, K.N. Velmurugan, S. Deepika, B. and Vinushitha, S., 2011 Formulation and in-vitro evaluation of buccal tablets of metoprolol tartrate International Journal of Pharmacy and Pharmaceutical Sciences 3 239246.Google Scholar
Rotenberg, B. Patel, A.J. and Chandler, D., 2011 Molecular explanation for why talc surfaces can be both hydrophilic and hydrophobic Journal of the American Chemical Society 133 2052120527.CrossRefGoogle ScholarPubMed
Rutkai, G. and Kristóf, T., 2008 Molecular simulation study of intercalation of small molecules in kaolinite Chemical Physics Letters 462 269274.CrossRefGoogle Scholar
Sablotsky, S. and Gentile, J.A. (1994) Method and device for the release of drugs to the skin. US Patent 5,300,291. Date Issued: 5 Apr.Google Scholar
Salcedo, I. Aguzzi, C. Sandri, G. Bonferoni, M.C. Mori, M. Cerezo, P. Sánchez, R. Viseras, C. and Caramella, C., 2012 In vitro biocompatibility and mucoadhesion of montmorillonite chitosan nanocomposite: A new drug delivery Applied Clay Science 55 131137.CrossRefGoogle Scholar
Shaikh, S. Birdi, A. Qutubuddin, S. Lakatosh, E. and Baskaran, H., 2007 Controlled release in transdermal pressure sensitive adhesives using organosilicate nanocomposites Annals of Biomedical Engineering 35 21302137.CrossRefGoogle ScholarPubMed
Sharifzadeh, G. (2013) Synthesis and characterization of polyacrylamide/sodium carboxymethyl cellulose/montmorillonite nanocomposite hydrogel vaginal ring for drug delivery systems. Masters thesis, Universiti Teknologi Malaysia, Malaysia, 82 pp.Google Scholar
Singer, A. and Galán, E., 2011 Developments in Palygorskite-Sepiolite Research: A New Outlook on these Nanomaterials Amsterdam Elsevier.Google Scholar
Singhvi, G. and Singh, M., 2011 Review: In-vitro drug release characterization models International Journal of Pharmacutical Studies and Research 2 7784.Google Scholar
Sohi, H. Sultana, Y. and Khar, R.K., 2004 Taste masking technologies in oral pharmaceuticals: Recent developments and approaches Drug Development and Industrial Pharmacy 30 429448.CrossRefGoogle ScholarPubMed
Sun, B. Ranganathan, B. and Feng, S.-S., 2008 Multifunctional poly (d, l-lactide-co-glycolide)/montmorillonite (plga/mmt) nanoparticles decorated by trastuzumab for targeted chemotherapy of breast cancer Biomaterials 29 475486.CrossRefGoogle ScholarPubMed
Suresh, R. Borkar, S. Sawant, V. Shende, V. and Dimble, S., 2010 Nanoclay drug delivery system International Journal of Pharmaceutical Sciences and Nanotechnology 3 901905.Google Scholar
Takahashi, T. Yamada, Y. Kataoka, K. and Nagasaki, Y., 2005 Preparation of a novel PEG-clay hybrid as a DDS material: Dispersion stability and sustained release profiles Journal of Controlled Release 107 408416.CrossRefGoogle ScholarPubMed
Tan, H.S. and Pfister, W.R., 1999 Pressure-sensitive adhesives for transdermal drug delivery systems Pharmaceutical Science & Technology Today 2 6069.CrossRefGoogle ScholarPubMed
Tsourvakas, S., 2012.Local Antibiotic Therapy in the Treatment of Bone and Soft Tissue InfectionsCrossRefGoogle Scholar
Veniale, F. Barberis, E. Carcangiu, G. Morandi, N. Setti, M. Tamanini, M. and Tessier, D., 2004 Formulation of muds for pelotherapy: Effects of “maturation” by different mineral waters Applied Clay Science 25 135148.CrossRefGoogle Scholar
Vergaro, V. Abdullayev, E. Lvov, Y.M. Zeitoun, A. Cingolani, R. Rinaldi, R. and Leporatti, S., 2010 Cytocompatibility and uptake of halloysite clay nanotubes Biomacromolecules 11 820826.CrossRefGoogle ScholarPubMed
Viseras, C. Cerezo, P. Sanchez, R. Salcedo, I. and Aguzzi, C., 2010 Current challenges in clay minerals for drug delivery Applied Clay Science 48 291295.CrossRefGoogle Scholar
Viseras, C. and Lopez-Galindo, A., 1999 Pharmaceutical applications of some Spanish clays (sepiolite, palygorskite, bentonite): Some preformulation studies Applied Clay Science 14 6982.CrossRefGoogle Scholar
Wang, J.H. Young, T.H. Lin, D.J. Sun, M.K. Huag, H.S. and Cheng, L.P., 2006 Preparation of clay/PMMA nanocomposites with intercalated or exfoliated structure for bone cement synthesis Macromolecular Materials and Engineering 291 661669.CrossRefGoogle Scholar
Wang, L. Xing, H. Zhang, S. Ren, Q. Pan, L. Zhang, K. Bu, W. Zheng, X. Zhou, L. and Peng, W., 2013 A Gd-doped Mg-Al-LDH/Au nanocomposite for CT/MR bimodal imagings and simultaneous drug delivery Biomaterials 34 33903401.CrossRefGoogle ScholarPubMed
Wei, J.-C. Yen, Y.-T. Su, H.-L. and Lin, J.-J., 2011 Inhibition of bacterial growth by the exfoliated clays and observation of physical capturing mechanism The Journal of Physical Chemistry C 115 1877018775.CrossRefGoogle Scholar
Williams, L.B. and Haydel, S.E., 2010 Evaluation of the medicinal use of clay minerals as antibacterial agent International Geology Review 52 745770.CrossRefGoogle Scholar
Williams, L.B. Haydel, S.E. Giese, R.F. and Eberl, D.D., 2008 Chemical and mineralogical characteristics of French green clays used for healing Clays and Clay Minerals 56 437452.CrossRefGoogle Scholar
Wittchow, E. (2014) Biocorrodible implant with anti-corrosion coating. US Patent 20,140,228,968. Date Issued: 14 Aug.Google Scholar
Wokovich, A.M. Prodduturi, S. Doub, W.H. Hussain, A.S. and Buhse, L.F., 2006 Transdermal drug delivery system (TDDS) adhesion as a critical safety, efficacy and quality attribute European Journal of Pharmaceutics and Biopharmaceutics 64 18.CrossRefGoogle ScholarPubMed
Yang, J.-H. Lee, S.-Y. Han, Y.-S. Park, K.-C. and Choy, J- H, 2003 Efficient transdermal penetration and improved stability of L-ascorbic acid encapsulated in an inorganic nanocapsule Bulletin — Korean Chemical Society 24 499503.Google Scholar