Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T21:33:26.371Z Has data issue: false hasContentIssue false

Reply to: Comments on an Expansible Mineral Having High Rehydration Ability

Published online by Cambridge University Press:  01 July 2024

Katsutoshi Tomita*
Affiliation:
Institute of Earth Sciences, Kagoshima University, Kagoshima, Japan
Rights & Permissions [Opens in a new window]

Abstract

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Case Report
Copyright
Copyright © Clay Minerals Society 1974

References

Brindley, G. W. and Sandalaki, Z., (1963) Structure, composition and genesis of some long-spacing, mica-like minerals Am. Mineralogist 48 138149.Google Scholar
Cole, W. F., (1974) Comments on: An expansible mineral having high rehydration ability Clays and Clay Minerals 22 307308.CrossRefGoogle Scholar
Cole, W. F. and Hosking, J. S., (1957) Clay mineral mixtures and interstratified minerals The Differential Thermal Investigation of Clays London Mineralogical Society of Great Britain 248274.Google Scholar
Granquist, W. T. and Kennedy, J. V., (1967) Sorption of water at high temperatures on certain clay mineral surfaces. Correlation with lattice fluoride Clays and Clay Minerals 15 103117.CrossRefGoogle Scholar
Grim, R. E. and Bradley, W. F., (1948) Rehydration and dehydration of the clay minerals Am. Mineralogist 33 5059.Google Scholar
Hill, R. D., (1953) Rehydration of clay minerals Trans. Brit. Ceram. Soc. 52 589613.Google Scholar
Kanaoka, S., (1968) Long spacing clay mineral in Uebi stone from Ehime Prefecture and Izushi stone from Hyogo Prefecture J. Ceram. Assoc. Japan 76 1826 10.2109/jcersj1950.76.871_72 (In Japanese with English abstract.).CrossRefGoogle Scholar
Schmidt, E. R. and Heystek, H., (1953) Saponite from Krugersdorp Miner. Mag. 30 201210.Google Scholar
Tomita, K., (1974) Similarities of rehydration and rehydroxlation properties of rectorite and 2M micas Clays and Clay Minerals 22 7985 10.1346/CCMN.1974.0220111 (Bradley Memorial Issue).CrossRefGoogle Scholar
Tomita, K. and Dozono, M., (1972) Formation of an interstratified mineral by extraction of potassium from mica with sodium tetraphenylboron Clays and Clay Minerals 20 225231.CrossRefGoogle Scholar
Tomita, K. and Dozono, M., (1973) An expansible mineral having high rehydration ability Clays and Clay Minerals 21 185190.CrossRefGoogle Scholar
Tomita, K. and Dozono, M., (1974) An interstratified mineral of mica and montmorillonite found in an altered tuff J. Japan. Assoc. Miner. Pet. Econ. Geol. In press.CrossRefGoogle Scholar
Tomita, K. and Sudo, T., (1968) Interstratified structure formed from a pre-heated mica by acid treatments Nature 217 10431044.CrossRefGoogle Scholar
Tomita, K. and Sudo, T., (1968) Conversion of mica into an interstratified mineral Rept. Faculty of Sci., Kagoshima Univ. 1 89119.Google Scholar
Tomita, K., Yamashita, H. and Oba, N., (1969) An interstratified mineral found in altered andesite J. Japan. Assoc. Miner. Pet. Econ. Geol. 61 2534.CrossRefGoogle Scholar
van Olphen, H., (1965) Thermodynamics of interlayer absorption of water in clays J. Colloid Sci. 20 822837.CrossRefGoogle Scholar
Walker, G. F., (1961) Vermiculite Minerals The X-ray Identification and Crystal Structures of Clay Minerals London Mineralogical Society of Great Britain 297324.Google Scholar
Walker, G. F. and Cole, W. F., (1957) The vermiculite minerals The Differential Thermal Investigation of Clays London Mineralogical Society of Great Britain 191206.Google Scholar
Weiss, A. and Hofmann, U., (1951) Batavit Z. Naturforsch. 6b 405409.CrossRefGoogle Scholar
Wright, A. C., Granquist, W. T. and Kennedy, J. V., (1972) Catalysis by layer lattice silicates—I: The structure and thermal modification of a synthetic ammonium diocta-hedral clay J. Catalysis 25 6580.CrossRefGoogle Scholar