Hostname: page-component-78c5997874-m6dg7 Total loading time: 0 Render date: 2024-11-05T14:00:55.822Z Has data issue: false hasContentIssue false

Relation Between Swelling, Water Properties and b-Dimension in Montmorillonite-Water Systems

Published online by Cambridge University Press:  01 July 2024

Israela Ravina*
Affiliation:
Department of Agronomy, Purdue University, Lafayette, Indiana 47907, U.S.A.
Philip F. Low
Affiliation:
Department of Agronomy, Purdue University, Lafayette, Indiana 47907, U.S.A.
*
Present address: Soil Science Laboratory, Israel Institute of Technology, Haifa, Israel
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The b-dimensions of the unit cells of six different Na-saturated montmorillonites were determined by X-ray diffraction at water contents ranging from 0 to 20 g per g of montmorillonite. In every case, the b-dimension increased progressively with water content from its initial value, which was characteristic of each dry montmorillonite, to a final value of ~9•0Å, which was common to all montmorillonites. The latter value was reached when the water contents of the respective montmorillonites were equal to those at maximal swelling. When these water contents were plotted against the corresponding changes in b-dimension, a straight line that passed through the origin was obtained.

Different structure-sensitive properties of the water in montmorillonite-water systems (i.e. the partial specific volume, the amount remaining unfrozen at −5°C and the activation energy required for ions to move through it) were available, as functions of the species of exchangeable cation, from previous studies. Relevant b-dimensions were determined in the present study. It was found that all of these water properties were correlated with the b-dimension of the associated montmorillonite.

Our results indicate that epitaxy exists between the crystal lattices of montmorillonite and adsorbed water and that these lattices undergo mutual adjustment with each increment of water. The resulting loss of free energy causes water adsorption, i.e. swelling, to occur spontaneously. Swelling stops when no further adjustment takes place. This does not happen until the adsorbed water is several hundred angstroms thick and has achieved a preferred configuration.

Résumé

Résumé

La dimension b de la maille de six montmorillonites Na différentes a été mesurée par diffraction X, à des teneurs en eau allant de 0 à 20 g d’eau par g d’argile. Dans chaque cas, la dimension b augmente progressivement avec la teneur en eau, d’une valeur initiale caractéristique pour chacune des montmorillonites à l’état sec, jusqu’à une valeur finale de ~ 9,0 Å commune à tous les échantillons. Cette dernière valeur est atteinte lorsque la teneur en eau est égale, pour chaque montmorillonite, à celle qui assure le gonflement maximum. Lorsque les teneurs en eau sont portées en fonction des variations correspondantes de la dimension b, on obtient une ligne droite qui passe par l’origine.

On dispose, grâce à des travaux antérieurs, de différentes données concernant l’eau dans les systèmes eau-montmorillonite sensibles à la structure de l’eau (par exemple, volume spécifique partiel, quantité d’eau ne gelant pas à-5°C et énergie d’activation requise pour que les ions puissent s’y déplacer). Dans ce travail, on a déterminé les dimensions b correspondantes. On a trouvé que toutes ces propriétés de l’eau sont en corrélation avec la dimension b de la montmorillonite associée.

Nos résultats indiquent qu’il existe une épitaxie entre les réseaux cristallins de la montmorillonite et l’eau adsorbée et que ces réseaux subissent un ajustement mutuel à chaque variation incrémentaire de la teneur en eau. La perte d’énergie libre qui en résulte fait que l’adsorption de l’eau, c’est-à-dire le gonflement, est un phénomène spontané. Le gonflement s’arrête lorsqu’il n’y a plus aucun ajustement. Cette situation n’est pas atteinte tant que l’épaisseur de l’eau adsorbée est inférieure à plusieurs centaines d’angstroems et qu’une configuration préférentielle n’est pas réalisée.

Kurzreferat

Kurzreferat

Die b-Dimensionen der Einheitszellen von sechs verschiedenen Na-gesättigten Montmorilloniten wurde durch Röntgenbeugung bei Wassergehalten von 0 bis 20 g pro g Montmorillonit bestimmt. In jedem Falle nahm die b-Dimension mit zunehmendem Wassergehalt von einem für jeden trockenen Montmorillonit charakteristischen anfänglichen Wassergehalt bis zu einem Endwert von ~ 9,0 Å zu, der allen Montmorilloniten gemeinsam war. Der letztgenannte Wert wurde erreicht wenn die Wassergehalte der betreffenden Montmorillonite gleich denen bei maximaler Schwellung waren. Wurden diese Wassergehalte gegen die entsprechenden Änderungen in der b-Dimension aufgetragen, so wurde eine Gerade erhalten, die durch den Ursprung verlief.

Aus früheren Arbeiten waren verschiedene gefügebedingte Eigenschaften des Wassers in Montmorillonit-Wasser Systemen (d.h. das spezifische Teilvolumen, der bei —5°C ungefroren bleibende Anteil sowie die für den Durchgang erforderliche Aktivierungsenergie der Ionen), als Funktionen der Sorten austauschbarer Kationen, bekannt die belangvollen b-Dimensionen wurden in der gegenwärtigen Arbeit bestimmt. Es wurde festgestellt, dass alle diese Eigenschaften des Wassers in einer Beziehung zu der b-Dimension des betreffenden Montmorillonits standen.

Andere Ergebnisse dueten darauf hin, dass zwischen den Kristallgittern von Montmorillonit und adsorbiertem Wasser Epitaxix besteht, und dass mit jeder Zunahme des Wassergehaltes eine gegenseitige Angleichung dieser Gitter stattfindet. Der sich daraus ergebende Verlust an freier Energie gibt Anlass zu spontaner Wasseradsorption d.h. Quellung. Die Quellung endet wenn keine weitere Angleichung mehr stattfindet. Das erfolgt erst wenn das adsorbierte Wasser einige Hundert Angström stark geworden ist und eine bevorzugte Anordnung erreicht hat.

Резюме

Резюме

b-размеры элементарных ячеек шести различных насыщенных Na монтмориллонитов определялись дифракцией рентгеновских лучей при содержании воды от 0 до 20 гр на 1 гр монтмориллонита. В каждом случае b-размер прогрессивно увеличивался по сравнению с начальной величиной с увеличением содержания воды, что было характерно для каждого сухого монтмориллонита, до конечной величины ~ 9.0 А общей для всех монтмориллонитов. Последняя величина достигалась, когда содержание воды в соответствующих монтмориллонитах равнялось максимальному набуханию. При составлении кривой содержания воды и соответствующих изменений b-размеров, получалась прямая линия, проходящая через начальную величину.

От предыдущих исследований были получены, как функции катионообменных видов, различные структурно-чувствительные свойства воды в системах монтмориллонит/вода, (напр. парциальный удельный объем, незамерзающее при — 5°С количество и требуемая энергия активации для продвижения ионов). Настоящее исследование определило соответствующие b-размеры. Оказалось, что все эти свойства воды согласуются с b-размером соответствующего монтмориллонита.

Наши результаты показывают, что между кристаллическими решетками монтмориллонита и адсорбированной водой существует эпитаксия и что эти решетки взаиморегулируются с каждым увеличением количества воды. Получающаяся в результате потеря энергии причиняет появляющуюся самопроизвольно адсорбцию воды, т.е. набухание. Набухание останавливается, когда регулировка уже не происходит. Это не случается до тех пор, пока адсорбированная вода не будет в несколько сот ангстрем толщиной и не будет достигнута требуемая конфигурация.

Type
Research Article
Copyright
Copyright © 1972, The Clay Minerals Society

Footnotes

*

Journal Paper No. 4348, Purdue University Agricultural Experiment Station.

References

Anderson, D. M. and Low, P. F., (1958) The density of water adsorbed by lithium-sodium- and potassium-bentonite Soil Sci. Soc. Am. Proc. 22 99103.10.2136/sssaj1958.03615995002200020002xCrossRefGoogle Scholar
Bahl, O. P. and Sharma, S. K., (1970) Structure of vapor deposited silver films Thin Solid Films 1 263272.Google Scholar
Bailey, S. W., (1966) The status of clay mineral structures Clays and Clay Minerals 14 123.CrossRefGoogle Scholar
Barna, A., Barna, P. B. and Pócza, J. F., (1969) Some remarks on the epitaxial growth of films on substrates coated with amorphous deposits Thin Solid Films 4 R32R36.CrossRefGoogle Scholar
Bernai, J. D. and Hadzi, D., (1957) The function of the hydrogen bond in solids and liquids Hydrogen Bonding New York Pergamon Press 722.Google Scholar
Brindley, G. W. and Brown, G., (1961) Experimental methods The X-ray Identification and Crystal Structures of Clay Minerals London Mineral. Soc. 150.Google Scholar
Brindley, G. W. and Robinson, K., (1948) X-ray studies of halloysite and metahalloysite—I. The structure of metahalloysite, an example of a random layer lattice J. Mineral. Soc. 28 393406.Google Scholar
Chopra, K. L., (1969) Metastable thin-film epitaxial structures Phys. Status Solidi 32 489507.CrossRefGoogle Scholar
Davey, B. G. and Low, P. F., (1971) Physico-chemical properties of sols and gels of Na-montmorillonite with and without adsorbed hydrous aluminum oxide Soil Sci. Soc. Am. Proc. 35 230236.CrossRefGoogle Scholar
Davidtz, J. C. and Low, P. F., (1970) Relation between crystal-lattice configuration and swelling of montmorillonites Clays and Clay Minerals 18 325332.10.1346/CCMN.1970.0180604CrossRefGoogle Scholar
Davis, C. M. and Litovitz, T. A., (1965) Two-state theory of the structure of water J. Chem. Phys. 42 25632576.CrossRefGoogle Scholar
Distler, G. I. and Obronov, V. G., (1969) Photoelectret mechanism of long range transmission of structural information Nature 224 261262.CrossRefGoogle Scholar
Distler, G. I. and Obronov, V. G., (1971) Long range transmission and preservation of single crystal structural information by interfacial polyerystalline layers Nature Physical Sci. 229 242243.CrossRefGoogle Scholar
Distler, G. I. and Shenyavskaya, L. A., (1969) Polarization structure of interfacial amorphous films Nature 111 5253.CrossRefGoogle Scholar
Dutt, G. R. and Low, P. F., (1962) Relationship between the activation energies for deuterium oxide diffusion and exchangeable ion conductance in clay systems Soil Sci. 93 195203.CrossRefGoogle Scholar
Eirish, M. V. and Tret’jakova, L. I., (1970) The role of sorptive layers in the formation and change of the crystal structure of montmorillonite Clay Minerals 8 255266.CrossRefGoogle Scholar
Eisenberg, D. and Kauzmann, W., (1969) The Structure and Properties of Water. London Oxford University Press.Google Scholar
Farmer, V. C. and Russell, J. D., (1967) I.R. absorption spectrometry in clay studies Clays and Clay Minerals 15 121142.10.1346/CCMN.1967.0150112CrossRefGoogle Scholar
Farmer, V. C. and Russell, J. D., (1971) Interlayer complexes in layer silicates: the structure of water in lamellar ionic solutions Trans. Faraday Soc. 67 27372749.CrossRefGoogle Scholar
Foster, M. D., (1955) The relation between composition and swelling in clays Clays and Clay Minerals 3 205220.Google Scholar
Foster, W. R., Savins, J. G. and Waite, J. M., (1955) Lattice expansion and rheological behavior relationships in water-montmorillonite systems Clays and Clay Minerals 3 296316.Google Scholar
Frank, H. S., (1970) The structure of ordinary water Science 169 635641.CrossRefGoogle ScholarPubMed
Fripiat, J. J., Chaussidon, J. and Touillaux, R., (1960) Study of dehydration of montmorillonite and vermiculite by i.r. spectroscopy J. Phys. Chem. 64 12341241.CrossRefGoogle Scholar
Graham, J., Walker, G. F. and West, G. W., (1964) Nuclear magnetic resonance study of interlayer water in hydrated layer silicates J. Chem. Phys. 40 540550.CrossRefGoogle Scholar
Gurney, R. W., (1953) Ionic Processes in Solution. New York McGraw-Hill.Google Scholar
Heavens, O. S., (1970) Thin film research today Nature 228 10361039.CrossRefGoogle ScholarPubMed
Hendricks, S. B. and Jefferson, M. E., (1938) Structures of kaolin and talc-pyrophyllite hydrates and their bearing on water sorption of the clays Am. Mineralogist. 23 863875.Google Scholar
Henning, C. A. O., (1970) Orientation of vacuum condensed overgrowths through amorphous layers Nature 227 11291130.CrossRefGoogle Scholar
Hunter, R. J., Stirling, G. C. and White, J. W., (1971) Water dynamics in clays by neutron spectroscopy Nature Physical Sci. 230 192194.CrossRefGoogle Scholar
Jesser, W. A., (1969) Theory of pseudomorphism in thin films Mater. Sci. Engng 4 279286.CrossRefGoogle Scholar
Jorgensen, P., (1968) I.R. study of water adsorbed on Wyoming bentonite Geologiska Føren. Stockholm Førh. 90 213220.10.1080/11035896809451884CrossRefGoogle Scholar
Kamb, B., Rich, A. and Davidson, N., (1968) Ice polymorphism and the structure of water Structural Chemistry and Molecular Biology San Francisco Freeman.Google Scholar
Kamb, B., (1971) Hydrogen-bond stereochemistry and “anomalous water” Science 172 231242.CrossRefGoogle ScholarPubMed
Kavanau, J., (1964) Water and Solute-Water Interactions. .Google Scholar
Kay, B. D. and Low, P. F., (1970) Measurement of the total suction of soils by a thermistor Psychrometer Soil Sci. Soc. Am. Proc. 34 373376.10.2136/sssaj1970.03615995003400030011xCrossRefGoogle Scholar
Kemper, W. D., Maasland, D. E. L. and Porter, L. K., (1964) Mobility of water adjacent to mineral surfaces Soil Sci. Soc. Am. Proc. 28 164172.CrossRefGoogle Scholar
Kolaian, J. H. and Low, P. F., (1963) Calorimetric determination of unfrozen water in montmorillonite pastes Soil Sci. 95 376384.10.1097/00010694-196306000-00002CrossRefGoogle Scholar
Kuntze, R., Chambers, A. and Prutton, M., (1969) Pseudomorphism in the (100) Ni-Cu system Thin Solid Films 4 4760.CrossRefGoogle Scholar
Leonard, R. A., (1970) I.R. analysis of partially deuter-ated water adsorbed on clay Soil Sci. Soc. Am. Proc. 34 339343.CrossRefGoogle Scholar
Leonard, R. A. and Weed, S. B., (1967) Influence of exchange ions on the b-dimensions of dioctahedral vermiculite Clays and Clay Minerals 15 149161.CrossRefGoogle Scholar
Low, P. F., (1958) The apparent mobilities of exchangeable alkali metal cations in bentonite-water systems Soil Sci. Soc. Am. Proc. 22 395398.10.2136/sssaj1958.03615995002200050008xCrossRefGoogle Scholar
Low, P. F., (1961) Physical chemistry of clay-water interaction Advances in Agronomy 13 269327.CrossRefGoogle Scholar
Low, P. F., (1962) Influence of adsorbed water on exchangeable ion movement Clays and Clay Minerals 9 219228.CrossRefGoogle Scholar
Low, P. F., (1968) Observations on activity and diffusion coefficients in Na-montmorillonite Israel J. Chem. 6 325336.CrossRefGoogle Scholar
Low, P. F., Anderson, D. M. and Hoekstra, P., (1968) Some thermodynamic relationships for soils at or below the freezing point 1. Freezing point depression and heat capacity Water Resources Res. 4 379394.CrossRefGoogle Scholar
Low, P. F., Ravina, I. and White, J. L., (1970) Changes in b-dimension of Na-montmorillonite with interlayer swelling Nature 226 445446.CrossRefGoogle ScholarPubMed
Low, P. F. and White, J. L., (1970) Hydrogen bonding and polywater in clay-water systems Clays and Clay Minerals 18 6366.10.1346/CCMN.1970.0180108CrossRefGoogle Scholar
Macey, H. H., (1942) Clay-water relationships and the internal mechanism of drying Trans. Br. Ceramic Soc. 41 73121.Google Scholar
Matthews, J. W., (1966) Accomodations of misfit across the interface between single-crystal films of various face-centered cubic metals Phil. Mag. 13 12071221.10.1080/14786436608213536CrossRefGoogle Scholar
Matthews, J. W. and Jesser, W. A., (1967) Experimental evidence for pseudomorphic growth of platinum on gold Acta Met. 15 595600.CrossRefGoogle Scholar
Mering, J. and Brindley, G. W., (1967) X-ray diffraction band profiles of montmorillonite—influence of hydration and of the exchangeable cations Clays and Clay Minerals 15 5160.CrossRefGoogle Scholar
Miller, R. J. and Low, P. F., (1963) Threshold gradient for water flow in clay systems Soil Sci. Soc. Am. Proc. 27 605609.CrossRefGoogle Scholar
Nagasawa, K., (1969) Kaolin minerals in Cenozoic sediments of central Japan Proc. Internatl. Clay Conf. Tokyo Japan 1 1530.Google Scholar
Narten, A. H. and Levy, H. A., (1969) Observed diffraction pattern and proposed models of liquid water Science 165 447454.CrossRefGoogle ScholarPubMed
Oster, J. D., (1962) Activation energy for ion movement in thin water films on montmorillonite .Google Scholar
Pashley, D. W., (1965) The nucleation, growth, structure and epitaxy of thin surface films Adv. Physics 14 327416.CrossRefGoogle Scholar
Pauling, L. and Hadzi, D., (1959) The structure of water Hydrogen Bonding Oxford Pergamon Press.Google Scholar
Poh, K. J. and Anderson, J. C., (1969) The structure and growth of epitaxial PbSe films Thin Solid Films 3 139156.CrossRefGoogle Scholar
Radoslovich, E. W., (1962) The cell dimensions and symmetry of layer-lattice silicates—II. Regression relations Am. Mineralogist 47 617636.Google Scholar
Radoslovich, E. W. and Norrish, K., (1962) The cell dimensions and symmetry of layer-lattice silicates—I. Some structural considerations Am. Mineralogist 47 599616.Google Scholar
Rich, C. I., (1957) Determination of (060) reflections of clay minerals by means of counter type X-ray diffraction instruments Am. Mineralogist 42 569570.Google Scholar
Robinson, R. A. and Stokes, R. H., (1959) Electrolyte Solutions London Butterworths.Google Scholar
Russell, J. D. and Farmer, V. C., (1964) LR. spectroscopic study of the dehydration of montmorillonite and saponite Clay Minerals Bull. 5 443464.CrossRefGoogle Scholar
Shirozu, H. and Bailey, S. W., (1966) Crystal structure of a two-layer Mg-vermiculite Am: Mineralogist 51 11241143.Google Scholar
Tabikh, A. A., Barshad, I. and Overstreet, R., (1960) Cation exchange hysteresis in clay minerals Soil Sci. 90 219226.CrossRefGoogle Scholar
Tabor, D. and Winterton, R. H. S., (1968) Surface forces: Direct measurement of normal and retarded van der Waals forces Nature 219 11201121.CrossRefGoogle ScholarPubMed
van der Marel, H. W., (1966) Cation exchange, specific surface and adsorbed water molecules Z. Pflanz. Düngung, Bodenkunde 114 161175.CrossRefGoogle Scholar
van der Merwe, J. H., (1964) Interfacial misfit and bonding between oriented films and their substrates Single Crystal Films New York Macmillan 139163.Google Scholar
Wu, T. H., (1964) A nuclear magnetic resonance study of water in clay J. Geophysical Res. 69 10831091.CrossRefGoogle Scholar