Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-26T01:07:43.088Z Has data issue: false hasContentIssue false

Relation Between Swelling, Surface Area and b Dimension of Na-Montmorillonites

Published online by Cambridge University Press:  01 July 2024

John W. Odom
Affiliation:
Department of Agronomy, Purdue University, W. Lafayette, Indiana 47907
Philip F. Low
Affiliation:
Department of Agronomy, Purdue University, W. Lafayette, Indiana 47907
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

From swelling and surface area measurements, it was found that the swelling of a montmorillonite depends linearly on the fraction of its layers that fully expand in water and that this fraction, in turn, depends linearly on the b dimension of the unit cell. Therefore, swelling is a linear function of the b dimension. However, the specific surface area of a montmorillonite is a linear function of its b dimension only if no partially expanded layers exist. It was also found that the distance between fully expanded layers at a given applied pressure is the same for all montmorillonites.

Резюме

Резюме

С помощью измерения разбухания и поверхностной площади было обнаружено, что разбухание монтмориллонита линейно зависит от той части слоев, которые полностью расширяются в воде и что эта часть слоев в свою очередь линейно зависит от размера b элементарной ячейки. Таким образом, разбухание является линейной функцией размера b. Однако удельная площадь поверхности монтмориллонита является линейной функцией его размера b, если только отсутствуют частично расширяющиеся слои. Было обнаружено также,что расстояние между полностью расширенными слоями при данном приложенном давлении одинаково для всех монтмориллонитов.

Kurzreferat

Kurzreferat

Von Quell-und Oberflächenmessungen wurde herausgefunden,daß das Montmorillonitquellen von dem Anteil seiner Schicht abhängt,der sich in Wasser voll ausdehnt und,daß die Größe dieses Anteils in linearischer Weise von der b Dimension der Einzelzelle abhängt. Deshalb ist das Quellen eine lineare Funktion der b Dimension. Die spezifische Oberfläche eines Montmorilloniten jedoch, hängt von der b Dimension allein ab, wenn keine teilweise ausgedehnten Schichten existieren. Es wurde auch gefunden, daß der Abstand zwischen voll ausgedehnten Schichten bei jedem gegebenen Druck für alle Montmorilloniten derselbe ist.

Résumé

Résumé

On a constaté à partir du gonflement et des mesures de la surface externe que le gonflement d'une montmorillonite dépendait de manière linéaire de la fraction de ses couches se dilatant totalement dans l'eau, et que cette fraction à son tour dépendait de manière linéaire de la dimension b de la maille. Le gonflement est par conséquent une fonction linéaire de la dimension b. La surface externe spécifique d'une montmorillonite n'est cepen3ant une fonction linéaire de sa dimension b que s'il n'existe pas de couches partiellement dilatées. On a aussi trouvé que la distance entre les couches totalement dilatées à une pression donnée est la même pour toutes les montmorillonites.

Type
Research Article
Copyright
Copyright © 1978, The Clay Minerals Society

Footnotes

*

Journal Paper No. 6877, Purdue University Agricultural Experiment Station.

References

Banin, A. and Lahav, N. (1968) Particle size and optical properties of montmorillonite in suspension: Isr. J. Chem. 6, 235250.CrossRefGoogle Scholar
Brindley, G. W. and Thompson, T. D. (1970) Methylene blue absorption by montmorillonites. Determination of surface areas and exchange capacities with different initial cation saturations: Isr. J. Chem. 8, 409415.CrossRefGoogle Scholar
Brown, G. and MacEwan, D. M. C. (1951) X-ray diffraction by structures with random interstratification: In X-Ray Identification and Crystal Structures of Clay Minerals (Edited by Brindley, G. W.) , pp. 266284. Mineral. Soc., London.Google Scholar
Carter, D. L., Heilman, M. D. and Gonzalez, C. L. (1965) Ethylene glycol monoethyl ether for determining surface area of silicate minerals: Soil Sci. 100, 356360.CrossRefGoogle Scholar
Davidtz, J. C. and Low, P. F. (1970) Relation between crystal-lattice configuration and swelling of montmorillonites: Clays & Clay Minerals 18, 325332.CrossRefGoogle Scholar
Earley, J. W., Osthaus, B. B. and Milne, I. H. (1953) Purification and properties of montmorillonite: Am. Mineral. 38, 707724.Google Scholar
Falk, M. and Ford, T. A. (1966) Infrared spectrum and structure of liquid water: Can. J. Chem. 44, 16991707.CrossRefGoogle Scholar
Foster, M. D. (1953) Geochemical studies of clay minerals: II. Relation between ionic substitution and swelling in montmorillonites: Am. Mineral. 38, 9941006.Google Scholar
Foster, W. R., Savins, J. G. and Waite, J. M. (1955) Lattice expansion and rheological behavior relationships in water–montmorillonite systems: Clays & Clay Minerals 3, 296316.Google Scholar
Hang, P. T. and Brindley, G. W. (1970) Methylene blue absorption by clay minerals. Determination of surface areas and cation exchange capacities: Clays & Clay Minerals 18, 203212.CrossRefGoogle Scholar
Jackson, M. L. (1969) Soil Chemical Analysis—Advanced Course: Published by the author, Madison, Wis. 53706.Google Scholar
Jesser, W. A. (1969) Theory of pseudomorphism in thin films: Mat. Sci. Eng. 4, 279286.CrossRefGoogle Scholar
Lerot, L. and Low, P. F. (1976) Effect of swelling on the infrared absorption spectrum of montmorillonite: Clays & Clay Minerals 24, 191199.CrossRefGoogle Scholar
Margheim, J. F. (1973) The relation between the b-dimension and the swelling of five sodium-saturated montmorillonites at different pressures: M.S. Thesis, Purdue University, W. Lafayette, Ind.Google Scholar
Margheim, J. F. (1977) Interrelations of b-dimension, water content and rheology of Na-smectites: Ph.D. Thesis, Purdue University, W. Lafayette, Ind.Google Scholar
Norrish, K. (1954) The swelling of montmorillonite: Discuss. Faraday Soc. 18, 120134.CrossRefGoogle Scholar
Philen, O. D. Jr., Weed, S. B. and Weber, J. B. (1971) Surface charge characterization of layer silicates by competitive adsorption of two organic divalent cations: Clays & Clay Minerals 19, 295302.CrossRefGoogle Scholar
Prost, R. (1975) Interactions between adsorbed water molecules and the structure of clay minerals: hydration mechanism of smectites: Proc. Int. Clay Conf. Mexico City, Mexico 351359.Google Scholar
Radoslovich, E. W. (1962) The cell dimensions and symmetry of layer lattice silicates. II. Regression relations: Am. Mineral. 47, 617636.Google Scholar
Ravina, I. and Low, P. F. (1972) Relation between swelling, water properties and b-dimension in montmorillonite-water systems: Clays & Clay Minerals 20, 109123.CrossRefGoogle Scholar
Rhoades, J. D., Ingvalson, R. D. and Stumpf, H. T. (1969) Interlayer spacings of expanded clay minerals at various swelling pressures: an X-ray diffraction technique for direct determination: Soil Sci. Soc. Amer. Proc. 33, 473475.CrossRefGoogle Scholar
Ruiz, H. A. and Low, P. F. (1976) Thermal expansion of interlayer water in clay systems. II. Effect of clay composition. In Colloid and Interface Science (Edited by Kerker, M.) , Vol. 3, pp. 503515. Academic Press, New York.CrossRefGoogle Scholar
Schofield, R. K. (1949) Calculation of surface areas of clays from measurements of negative adsorption: Br. Ceram. Soc. 48, 207213.Google Scholar
Schultz, L. G. (1969) Lithium and potassium absorption, dehydroxylation temperature, and structural water content of aluminous smectites: Clays & Clay Minerals 17, 115149.CrossRefGoogle Scholar
van der Merwe, J. H. (1964) Interfacial misfit and bonding between oriented films and their substrates. In Single Crystal Films (Edited by Francombe, M. H. and Sato, H.) , pp. 139163. Macmillan, New York.Google Scholar